
ar
X

iv
:2

50
5.

02
02

9v
1 

 [
nl

in
.S

I]
  4

 M
ay

 2
02

5

EFFICIENT COMPUTATION OF SOLITON GAS PRIMITIVE POTENTIALS

CADE BALLEW, DENIZ BILMAN, AND THOMAS TROGDON

ABSTRACT. We consider the problem of computing a class of soliton gas primitive potentials
for the Korteweg-de Vries equation that arise from the accumulation of solitons on an infinite
interval in the physical domain, extending to −∞. This accumulation results in an associ-
ated Riemann–Hilbert problem on a number of disjoint intervals. In the case where the jump
matrices have specific square-root behavior, we describe an efficient and accurate numerical
method to solve this Riemann–Hilbert problem and extract the potential. The keys to the
method are, first, the deformation of the Riemann–Hilbert problem, making numerical use
of the so-called g-function, and, second, the incorporation of endpoint singularities into the
chosen basis to discretize and solve the associated singular integral equation.

1. INTRODUCTION

A soliton gas can be thought of as a very large number of solitons, with possibly ran-
dom amplitudes and phases, interacting weakly (rarefied gas) or strongly (dense gas) in a
medium modeled by an integrable nonlinear wave model. This concept goes back to the
work of Zakharov [16]. There has been a growing interest in the study of such solutions at
the analytical, numerical, and experimental fronts in the past decade or so, and the litera-
ture on soliton gasses is vast. We refer the reader to the comprehensive review article [15] on
the subject and the references therein. The notion behind the construction of such solutions
from an integrable systems point of view is the so-called “dressing” method [17]. This idea
was employed in [7] to construct the so-called primitive potentials, which can be taken as
initial data for a solution modeling a soliton gas.

The current state of the art for computing soliton gas solutions of integrable nonlinear
wave models is largely limited to either computing a suitable nonlinear superposition of
N solitons for N large or numerically implementing an available asymptotic formula in a
suitable asymptotic region of the space-time domain. The former approach is equivalent to
computing an iterated (or N-fold) Darboux transformation, and it requires high-precision
arithmetic because the size of the underlying linear algebra system is proportional to N (the
number of solitons), and that linear system becomes numerically ill-conditioned as N grows.
The latter approach has its difficulties as the accurate evaluation of asymptotic formulæ
involving Riemann theta functions is a challenging task, if at all possible, especially when
the genus of the underlying Riemann surface is not small. Moreover, the availability of
spacetime asymptotic formulæ is limited to soliton gasses obtained by the accumulation of
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FIGURE 1. KdV soliton gas with r1(λ) supported on five pairs of bands,
nonlinearly superimposed with five solitons. In the notation of (1.5), I1 =
(0.25, 0.5), I2 = (0.8, 1.2), I3 = (1.5, 2), I4 = (2.5, 3), I5 = (4, 5), with
f1(z) = 1, f2(z) = 1/2, f3(z) = 1/4, f4(z) = 1/8, f5(z) = 1/16 and
αj = β j =

1
2 for j = 1, . . . , 5. The solitons are associated with (see Riemann–

Hilbert Problem 2) κ1 = 0.1, κ2 = 0.7, κ3 = 2.25, κ4 = 3.5, κ5 = 5.5 with the
norming constants χ1 = 105, χ2 = 1000, χ3 = 100, χ4 = 10, and χ5 = 10−6.

eigenvalues on one pair of bands in the spectral plane. Regardless, such formulæ cease to be
accurate for intermediate values of (x, t) outside of asymptotic regimes. An approach that
is more closely related to our work was taken in [7], where soliton gas (primitive) potentials
were computed via the solution of a system of singular integral equations arising from a
dressing construction. The numerical solution of this system necessitated the use of high-
precision (i.e., quadruple or higher) arithmetic. In the current work, we avoid the use of
high-precision arithmetic by using Riemann–Hilbert (RH) steepest-descent deformations [6]
to, in effect, precondition the singular integral equations. Despite the growing body of work
on both theoretical and experimental fronts, an efficient framework for computing soliton
gas solutions of integrable nonlinear wave models has been elusive.

Specifically, with this article, we introduce a fast and accurate method to compute a class
of soliton gas primitive potentials in the context of the Korteweg–de Vries (KdV) equation

(1.1) ut + 6uux + uxxx = 0, −∞ < x < +∞,
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based on the numerical solution of their Riemann–Hilbert problem (RHP) representations.
An advantage of this approach is that there is no time-stepping involved, as (x, t) enter the
problem as (explicit) parameters. The method is easily parallelizable over values of (x, t).

The method presented here can compute primitive potentials of soliton gasses (at t = 0,
for all x) and their time evolution under the KdV flow for small values of t, still on the en-
tire x-axis. In this regime, the method is asymptotically accurate as x → ±∞ and does not
require high-precision arithmetic. Importantly, it allows us to compute soliton gas solutions
of the KdV equation with associated Riemann–Hilbert jump conditions supported on many
pairs of bands. We also compute such soliton gas solutions nonlinearly superposed with a
number of solitons. See Figure 1 for a soliton gas solution of (1.1) with associated Riemann–
Hilbert jump conditions supported on five (pairs of) bands and nonlinearly superimposed
with five solitons, computed with our method. Pointwise evaluation of the solution in Fig-
ure 1 does not require higher precision arithmetic and takes about 0.7 seconds in the un-
modulated region (see Section 2.2) and 0.08 seconds in the quiescent region (see Section 2.1)
on a standard laptop1. Solution animations and Julia code used to generate the plots in this
paper can be found at [1].

The method presented here can also compute soliton gas solutions of the KdV equation
in the entire (x, t)-plane outside of an unbounded wedge-shaped region emanating from
(x, t) = (0, 0). See Figure 2 for a pure soliton gas (no solitons) supported on five pairs of
bands. The bottom panel presents the computed large-time evolution in the tail x < −Kt
for some suitable choice of constant K > 0. Figure 3 provides the density plot of a soli-
ton gas with associated Riemann–Hilbert jump conditions supported on a single pair of
bands, nonlinearly superimposed with two solitons, in the complement of the aforemen-
tioned wedge-shaped region. As is apparent from this figure, the validity of our method
extends a little bit into the wedge (see the boundary curves in black). The extension stops
once the exponential factors supported on the suitable deformed jump contours become too
large as (x, t) penetrates into the wedge.

In Figure 4, we present a plot of the computed large-time evolution of a soliton gas with
associated Riemann–Hilbert jump conditions supported on two pairs of bands (instead of
five as in Figures 1 and 2), and in the notation of (1.5), we choose f1(z) to be much larger
than f2(z).

This work is a culmination of recent advances made in computing orthogonal polynomi-
als that are orthogonal on multiple disjoint intervals [3] and work in computing large-genus
solutions of the KdV equation [4]. The key ingredient behind these developments is the
choice of a basis that encodes the behavior (e.g., the singularity structure) of the solution of
an RHP at the endpoints of the jump contour. We also make use of the machinery available
in the OperatorApproximation.jl software package [14].

1All computations in this paper can be performed on a Lenovo laptop running Ubuntu version 20.04 with 8
cores and 16 GB of RAM with an Intel® Core™ i7-11800H processor running at 2.30 GHz. However, due to the
ease of parallelization, a cluster can greatly reduce the time it takes to generate the figures.
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FIGURE 2. A pure KdV soliton gas with r1(λ) supported on five pairs of
bands. In the notation of (1.5), I1 = (0.25, 0.5), I2 = (0.8, 1.2), I3 = (1.5, 2),
I4 = (2.5, 3), I5 = (4, 5) with f1(z) = 1, f2(z) = 1/2, f3(z) = 1/4, f4(z) =
1/8, f5(z) = 1/16 and αj = β j =

1
2 for j = 1, . . . , 5.

This work focuses mainly on the computation of soliton gas potentials supported on
many bands and completing the groundwork for nonlinear superpositions of such poten-
tials with many solitons. Extensions of our method to the entire (x, t)-plane, along with
routines to compute a broader class of soliton gas solutions, will appear in a forthcoming
article.

Acknowledgements. This work was supported by the National Science Foundation under
Grant No. DMS-2108029 (DB) and Grant No. DMS-2306438 (TT). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation. Parts of this work
were completed on Hyak, UW’s high performance computing cluster.

1.1. Riemann–Hilbert definition of a KdV soliton gas. Let n ∈ Z+ be fixed and consider
a collection of disjoint intervals i(aj, bj), 1 ≤ j ≤ n, on the imaginary axis with 0 < aj <

bj < aj+1 for each 1 ≤ j ≤ n − 1. We denote the union of the these intervals and of their
reflections by

(1.2) Σ+ :=
n⋃

j=1

(aj, bj) and Σ− :=
n⋃

j=1

(−bj,−aj),



EFFICIENT COMPUTATION OF SOLITON GAS PRIMITIVE POTENTIALS 5

FIGURE 3. Density plot of the computed soliton gas with r1(λ) supported
on a single pair of bands with two solitons. In the notation of (1.5), I1 =
(1.5, 2.5), f1(z) = 1, and α1 = β1 = 1

2 . The solitons are associated with the
eigenvalue parameters κ1 = 1, κ2 = 4 and the norming constants χ1 = 10,
χ2 = 10−10. Outside of the wedge region, the numerical method presented
here is seen to be uniformly accurate with a computational cost that is inde-
pendent of (x, t). Inside the wedge, the numerical method begins to break
down, and additional RH deformations will need to be incorporated.

and take all of these intervals to be oriented upwards. We consider a function r1 : (iΣ+ ∪
iΣ−) → C such that r1(λ) is positive for λ on each interval i(aj, bj), extending analytically to
a neighborhood of each i(aj, bj) with the local behavior

(1.3) r1(iz) = faj(z)(z − aj)
αj , αj ∈

{
− 1

2 , 1
2

}
,

for z in a neighborhood of aj, where faj(z) is analytic and satisfies faj(z) > 0 for z ≥ aj.
Similarly,

(1.4) r1(iz) = fbj(z)(bj − z)β j , β j ∈
{
− 1

2 , 1
2

}
,

for z in a neighborhood of bj, where fbj(z) is analytic and satisfies fbj(z) > 0 for z ≤ bj.
Here, all of the roots are taken to be the principal branch. Therefore, in the computations
performed for this paper, we take

(1.5) r1(iz) = f j(z)(z − aj)
αj(bj − z)β j , for z ∈ Ij := (aj, bj), Σ+ =

n⋃

j=1

Ij,
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FIGURE 4. A pure KdV soliton gas with r1(λ) supported on two pairs of
bands. In the notation of (1.5), I1 = (1, 2), I2 = (2.5, 3) with f1(z) = 100,
f2(z) = 1 and αj = β j =

1
2 , j = 1, 2. Bottom panel: The same solution plotted

along the ray x/t = −32.

for analytic functions f j and constants αj, β j ∈
{
− 1

2 , 1
2

}
. For λ ∈ iΣ−, r1 is defined by

symmetry: r1(λ) = r1(−λ). With these ingredients, we consider the following problem,
which we take as the definition of a soliton gas:

Riemann–Hilbert Problem 1 (Pure KdV soliton gas). Let (x, t) ∈ R × R+ be fixed. Find a
1 × 2 row vector-valued function M(λ) ≡ M(λ; x, t) with the following properties:

Analyticity: M(λ) is analytic for λ ∈ C\ cl(iΣ+∪ iΣ−), admitting continuous bound-
ary values on2 iΣ+ ∪ iΣ−.
Jump conditions: The boundary values M+(λ) (resp. M−(λ)) from the left (resp.
right) are related via

M+(λ) = M−(λ)

[
1 0

−2ir1(λ)e2i(xλ+4tλ3) 1

]
, λ ∈ i(aj, bj),(1.6)

M+(λ) = M−(λ)

[
1 2ir1(λ)e−2i(xλ+4tλ3)

0 1

]
, λ ∈ i(−bj,−aj), j = 1, 2, . . . , n.(1.7)

2cl(Σ) denotes the closure of a set Σ.
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Normalization: M(λ) =
[
1 1

]
+ O(λ−1) as λ → ∞.

Symmetry condition: M(−λ) = M(λ)

[
0 1
1 0

]
.

This problem has appeared in [7, 9] with different assumptions on the behavior of r1(λ)

at the endpoints3. The setting of [9] assumes that r1(λ) is nonvanishing and bounded at the
endpoints, in contrast with the assumptions in our work. As the reader will see, the end-
point behavior that we assume for r1(λ) enables a particularly fast computational method.
Riemann–Hilbert Problem 1 has a unique solution [9] (see Section 1.2 for the notion of a so-
lution when αj or β j is negative), and we can recover the soliton gas solution of (1.1) by the
second-order term at infinity [8]

(1.8) u(x, t) = − lim
λ→∞

2λ2(m1(z; x, t)m2(z; x, t)− 1),

where mj(z; x, t) is the jth component of the row vector M(λ; x, t).
We proceed with rotating the λ-plane clockwise by introducing r(z) := 2r1(iz) and Y(z) :=

M(iz), which satisfies the jump conditions

Y+(z) = Y−(z)

[
1 0

−ir(z)e−2θ(z;x,t) 1

]
, z ∈ Σ+, θ(z; x, t) := xz − 4tz3,(1.9)

Y+(z) = Y−(z)

[
1 ir(z)e2θ(z;x,t)

0 1

]
, z ∈ Σ−,(1.10)

and is analytic elsewhere. Note that all (real) intervals are oriented in the increasing direc-
tion. We consider the numerical solution of the RHP satisfied by Y(z), which inherits the
normalization and symmetry conditions in Riemann–Hilbert Problem 1.

Regarding the behavior of Y(z) at the endpoints, let cj denote either of the endpoints aj

or bj, and let γj denote the corresponding power αj or β j as in (1.3) and (1.4). As z → cj, we
have

(1.11) Y(z) =





[
O(1) O(1)

]
, if γj =

1
2 ,

[
O(|z − cj|−

1
2 ) O(1)

]
, if γj = − 1

2 .

This situation is mirrored on the negative real axis. As z → −cj, we have

(1.12) Y(z) =





[
O(1) O(1)

]
, if γj =

1
2 ,

[
O(1) O(|z + cj|−

1
2 )
]

, if γj = − 1
2 .

3A derivation of Riemann–Hilbert Problem 1 via a limiting procedure involving the accumulation of eigenvalues
of the Schrödinger operator on a single pair of bands with respect to a suitable density can be found in [9].
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Therefore, there is no ambiguity in the statement of the RHP for Y(z) (or in Riemann–Hilbert
Problem 1, for that matter) arising from unspecified behavior of the solution at the endpoints
of the jump contour — it is implied by the behavior of the jump matrix at the endpoints.

Writing λ = iz in the large-λ expansions that led to (1.8), the soliton gas solution u(x, t)
of (1.1) is recovered from Y(z) ≡ Y(z; x, t) via the formula

(1.13) u(x, t) = lim
z→∞

2z2(y1(z; x, t)y2(z; x, t)− 1).

1.2. From local solutions to consistent numerical approximations. A typical approach to
the numerical solution of Riemann–Hilbert Problem 1, for example, is to seek a singular
integral equation that the Cauchy density solves [11, 12]. More specifically, if

Y+(z) = Y−(z)J(z), z ∈ Γ,(1.14)

then we write

Y(z) =
[
1 1

]
+ CΓU(z), CΓU(z) =

1
2πi

∫

Γ

U(ζ)

ζ − z
dζ.(1.15)

If we denote the boundary values of the Cauchy transform by C±
Γ , U satisfies the singular

integral equation

C+
Γ U(z)− C−

Γ U(z)J(z) =
[
1 1

]
(J(z)− I), z ∈ Γ.(1.16)

To construct an efficient numerical method for this equation, one must choose a basis in
which U can be accurately represented, something that will typically result in the con-
sistency of the numerical method. To illustrate this, we consider a toy problem where
Γ = Γ1 ∪ Γ2 are disjoint, Γ1 = [−1, 1], oriented from z = −1 to z = 1, and

J|Γ1(z) =

[
0 ih(z)

i/h(z) 0

]
, h(z) =

√
1 − z2.(1.17)

We will build a local solution to this problem near z = 1, and it will tease out the singularity
structure. Technically speaking, we will also need to verify that our local solution satisfies
the requisite endpoint conditions, see (2.9), for example. We use this example because it
represents the structure encountered in the unmodulated region of Section 2.2. For that
encountered in the quiescent region of Section 2.1, the same analysis can be performed, but
it is simpler because the jump matrices are triangular and local solutions are found directly
by Cauchy integrals.

Consider ℓ(z) = (z− 1)1/4(z+ 1)1/4, where we use the principal branch cut along (−∞, 0]
for the quarter root function. It follows that this function satisfies ℓ+(z)ℓ−(z) = h(z), z ∈
[−1, 1]. Then, define

L(z) = ℓ(z)−σ3 , σ3 = diag(1,−1).(1.18)
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We compute, in a neighborhood of z = 1,

L−(z)J|Γ1(z)L
+(z)−1 =

[
0 i h(z)

ℓ+(z)ℓ−(z)

i ℓ
+(z)ℓ−(z)

h(z) 0

]
=

[
0 i
i 0

]
.(1.19)

Then, we factorize
[

0 i
i 0

]
= Qa−(z)−σ3 a+(z)σ3 Q−1, Q =

1√
2

[
1 −1
1 1

]
, a(z) =

(
z − 1
z + 1

)1/4

,(1.20)

giving

a−(z)σ3 Q−1L−(z)J|Γ1(z)L
+(z)−1Qa+(z)−σ3 = I.(1.21)

All of this is to say that

Ψ(z) = a(z)σ3 Q−1L(z) =
1√
2

[
1√
z+1

√
z − 1

− 1√
z−1

√
z + 1

]
,(1.22)

is a local solution to the RHP near z = 1, where the square roots denote the principal branch
cut along (−∞, 0]. Then define, for ϵ small,

Ŷ(z) =





Y(z) |z − 1| > ϵ,

Y(z)Ψ(z)−1 |z − 1| < ϵ,
(1.23)

which will be an analytic function near z = 1 (using the requisite endpoint conditions). We
find the representation

Y(z) = Ŷ(z)Ψ(z),(1.24)

for z near z = 1. To back out the behavior of U, we use the Plemelj lemma,

U(z) = Y+(z)− Y−(z) = Ŷ(z)
(
Ψ+(z)− Ψ−(z)

)
= Ŷ(z)

[
0

√
2(z − 1)

−
√

2
z−1 0

]
, |z − 1| < ϵ.

(1.25)

A similar analysis can be performed near z = −1, and patching together these arguments,
it follows that

U|Γ1(z) = A(z)

[
0

√
1 − z2

1√
1−z2 0

]
,(1.26)

where A(z) is an analytic vector-valued function that can therefore be approximated well
with polynomials of low degree. This local analysis informs the ansatz (2.2) below.

2. COMPUTING SOLITON GASSES

2.1. Quiescent region. When t = 0, the jump matrices in (1.9)–(1.10) are O(1) (away from
the endpoints) for x ≥ 0 and become exponentially close to identity as x → +∞ since
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Re(−2zx) < 0 on Σ+ and Re(2zx) < 0 on Σ− in this case. This configuration extends to a
region of the (x, t)-plane for t > 0 as long as Re(−2θ(z; x, t)) < 0 is maintained on Σ+ (the
situation is mirrored on Σ− automatically). The axis Re(z) = 0 is always a part of the locus
Re(−2θ(z; x, t)) = 0. The other branch of this locus is given by Re(z)2 = 3 Im(z)2 + x

4t . Thus,
the aforementioned boundedness or exponential decay of the jump matrices to the identity
is preserved for all (x, t) with t ≥ 0 satisfying

(2.1) x ≥ 4Kt,

for an arbitrary constant K > b2
n. In this setting, the RHP at hand can be treated numerically

as is, without implementing any contour deformations, by using an appropriate basis with
weights encoding the endpoint behavior of Y(z). We employ the approach put forth in [3, 4]
and consider the ansatz given by the superposition of weighted Cauchy transforms
(2.2)

Y(z) =
[
1 1

]
+

n

∑
j=1




∫ bj

aj

F+j(ζ)

[
w[1]
+j(ζ) 0

0 w[2]
+j(ζ)

]
dζ

ζ − z
+

∫ −aj

−bj

F−j(ζ)

[
w[1]
−j(ζ) 0

0 w[2]
−j(ζ)

]
dζ

ζ − z




,

for unknown row vector-valued densities F±j(ζ) on each interval. Here, each of the weights

w[1]
±j(ζ) and w[2]

±j(ζ) (used for the first and second columns, respectively) is equal to one of
the Chebyshev weights

ρ1(ζ) :=
1√

(ζ − a)(b − ζ)
, ρ2(ζ) := ρ1(ζ)

−1,

ρ3(ζ) :=
√
(ζ − a)(b − ζ)−1, ρ4(ζ) := ρ3(ζ)

−1,

for the four kinds of Chebyshev orthogonal polynomials on an interval [a, b] (on [aj, bj] for

w[1],[2]
+j (ζ) and on [−bj,−aj] for w[1],[2]

−j (ζ)). The choice is made so that the weight captures the
behavior of the given r(z) (and hence that of Y(z)) at the endpoints, and the corresponding
Chebyshev polynomials are used as the basis on the relevant interval. The associated sin-
gular integral equation is discretized and solved by collocation, as described in [11, 12], by
enforcing that the singular integral equation should be satisfied exactly at mapped Cheby-
shev first-kind zeros.

Remark 2.1. The triangular nature of the jump matrices (1.9)–(1.10) implies that the second column
of F+j(ζ) and the first column of F−j(ζ) are identically equal to 0. Therefore, the weights w[2]

+j(ζ)

and w[1]
−j(ζ) are immaterial. In practice, we do not encode this structure and allow the linear system

arising from collocation to force those entries to be equal to 0. This structure is lost in other asymptotic
regions upon contour deformations; therefore, we present the ansatz (2.2) in its general form for future
reference.
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FIGURE 5. Contour plot showing the sign of Re(φ(z; x, t)) in the complex
plane for t > 0 in the unmodulated region treated in Section 2.2. Here, x =
−2, t = 0.01, and in the notation of (1.5), I1 = (1, 2), I2 = (2.5, 3).

Finally, note that since r(z) = r(−z), w[2]
−j(ζ) = w[1]

+j(−ζ) for ζ ∈ [−bj,−aj]. The region
described by (2.1) is the analogue of the “constant region” as t → +∞ in [9] for the case
n = 1.

2.2. Unmodulated region. When t = 0 and x < 0, the situation is dramatically different:
All of the exponentials in (1.9)–(1.10) grow exponentially and unboundedly as x → −∞.
This behavior cannot be put under control solely by employing one of the four canonical
matrix factorizations for the jump matrices since the exponents are real-valued. In this set-
ting, the RHP is stabilized by modifying the exponent via introducing a g-function. This
is a generalization of the approach taken in [9, 10] for the case n = 1. Let Γ±j denote the
gaps: Γ0 = [−a1, a1], Γj = [bj, aj+1], and Γ−j = [−aj+1,−bj] for j = 1, 2, . . . , n − 1. To have
a uniform treatment that also captures a region when t > 0, we proceed with allowing for
t ≥ 0 with x < 0 and do not designate a particular large parameter. We seek a function
g(z) ≡ g(z; x, t) analytic for z /∈ [−bn, bn], with the following additional properties: g(z)
admits continuous boundary values g±(z) on [−bn, bn], taken from C±, satisfying

g+(z) + g−(z) = 2θ(z; x, t), z ∈ Σ+ ∪ Σ−,(2.3)

g+(z)− g−(z) = iΩ±j(x, t), z ∈ Γ±j, j = 0, 1, 2, . . . , n − 1,(2.4)

where Ω±j(x, t) are real-valued constants. Finally, g(z) = O(z−1) as z → ∞. Let R(z) be the
function analytic for z /∈ cl(Σ+ ∪ Σ−) satisfying R(z)2 = ∏n

j=1(z
2 − a2

j )(z
2 − b2

j ) along with
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R(z) = z2n + O(z2n−2) as z → ∞. Then,

(2.5) g(z) =
R(z)
2πi

∫

Σ+∪Σ−

2θ(ζ; x, t)dζ

R+(ζ)(ζ − z)
+

n−1

∑
ℓ=−(n−1)

Ωℓ(x, t)R(z)
2π

∫

Γℓ

dζ

R(ζ)(ζ − z)
,

where the 2n − 1 constants Ωℓ(x, t) are chosen to ensure the desired decay g(z) = O(z−1) as
z → ∞. These moment conditions result in a linear system:

(2.6)
n−1

∑
ℓ=−(n−1)

iΩℓ(x, t)
∫

Γℓ

ζkdζ

R(ζ)
= −

∫

Σ−∪Σ+

ζkθ(ζ; x, t)
R+(ζ)

dζ, k = 0, 1, 2, . . . , 2n − 2.

While this linear system can be shown to have a unique solution, it becomes ill-conditioned
for large values of n due to the presence of the monomials ζk. We solve an equivalent but
empirically well-conditioned linear system obtained by replacing the monomials ζk with
a suitable basis of polynomials of degree 2n − 2, chosen to vanish at the midpoints of the
2n − 2 gaps. That is, we compute the constants Ωℓ(x, t) using the basis

pk(x) =
n−1

∏
j=−n+1,j ̸=k

(x − µj), k = −n + 1, . . . , n − 1,

where µj denotes the midpoint of Γj. We compute the integrals in the linear system (2.6) via
Gauss–Chebyshev quadrature.

Now, introduce open and disjoint disks Dj, j = 1, 2, . . . , n, chosen so that Dj encloses
[aj, bj] in its interior, and let D−j be the analogue of Dj for [−bj,−aj]. We take the disk bound-
aries to be oriented counter-clockwise and make the following definitions (with correlated
signs on each line):

S(z) := Y(z)

[
1 i

r(z)e2θ(z;x,t)

0 1

]∓1

eg(z;x,t)σ3 , z ∈ Dj ∩ C±,(2.7)

S(z) := Y(z)

[
1 0

−i
r(z)e−2θ(z;x,t) 1

]∓1

eg(z;x,t)σ3 , z ∈ D−j ∩ C±,(2.8)

for j = 1, 2, . . . , n. Recall that σ3 = diag(1,−1). We set S(z) := Y(z)eg(z;x,t)σ3 elsewhere.
Using r+(z) = −r−(z) on Σ+ ∪ Σ−, we find that the jump conditions satisfied by S(z) are as
given in Figure 6. We denote the modified exponent by φ(z; x, t) := g(z; x, t)− θ(z; x, t). A
contour plot of the sign of Re(φ(z; x, t)) is given in Figure 5, and one can see that the jump
matrices on the circles are exponentially close to the identity matrix if t > 0 becomes large
for x/t in this region. This behavior together with the fact that the circular jump contours
are detached from Σ+ ∪ Σ− (no self-intersection points with jump matrices involving r(z))
is what enables an efficient numerical method. Therefore, the assumptions on the behavior
of r(z) at the endpoints are absolutely essential for our approach.
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−bj −aj

[
0 ir(z)
i

r(z) 0

]

eiΩ−j+1σ3

Γ−j+1

eiΩ−jσ3

Γ−j

[
1 0

ie2φ(z;x,t)

r(z) 1

]

[
1 0

− ie2φ(z;x,t)

r(z) 1

]
aj bj

[
0 − i

r(z)
−ir(z) 0

]

eiΩjσ3

Γj

eiΩj−1σ3

Γj−1

[
1 − ie−2φ(z;x,t)

r(z)
0 1

]

[
1 ie−2φ(z;x,t)

r(z)
0 1

]

· · ·

FIGURE 6. Jump contours and jump matrices associated with S(z; x, t) near
each interval. φ(z; x, t) = g(z; x, t)− θ(z; x, t).

Again, let cj denote either of the endpoints aj or bj, and let γj denote the corresponding
power αj or β j as in (1.3) and (1.4). From (1.11), (2.7), and (2.8), we find that as z → cj,

(2.9) S(z) =





[
O(1) O(|z − cj|−

1
2 )
]

, if γj =
1
2 ,

[
O(|z − cj|−

1
2 ) O(1)

]
, if γj = − 1

2 .

The situation is again mirrored as z approaches an endpoint of [−bj,−aj], but the behavior
of the columns is flipped.

As in [3, Section 3.2.3], we now introduce a correction to the g-function to eliminate the
constant jump conditions on the gaps Γ±j, j = 0, 1, . . . n − 1 at the expense of introducing
constants to the jump matrices on the intervals Σ+ ∪ Σ−. We seek a function h(z) ≡ h(z; x, t)
analytic for z /∈ [−bn, bn] with the properties

h+(z)− h−(z) = log(exp(−iΩ±k(x, t))), z ∈ Γ±k, k = 0, 1, 2, . . . , n − 1,(2.10)

h+(z) + h−(z) = A+j(x, t), z ∈ (aj, bj), j = 1, 2, . . . , n,(2.11)

h+(z) + h−(z) = A−j(x, t), z ∈ (−bj,−aj), j = 1, 2, . . . , n,(2.12)

along with h(z) = O(z−1) as z → ∞. Then,

(2.13)

h(z) =
R(z)
2πi

n

∑
j=1

[∫ bj

aj

Aj+(x, t)dζ

R+(ζ)(ζ − z)
+

∫ −aj

−bj

Aj−(x, t)dζ

R+(ζ)(ζ − z)

]

+
R(z)
2πi

n−1

∑
ℓ=−(n−1)

∫

Γℓ

log(exp(−iΩℓ(x, t)))dζ

R(ζ)(ζ − z)
,

where the constants A±j(x, t) are determined to ensure the desired decay at infinity. This
results in the following linear system of 2n equations:
(2.14)

n

∑
j=1

[
A+j(x, t)

∫ bj

aj

ζkdζ

R+(ζ)
+ A−j(x, t)

∫ −aj

−bj

ζkdζ

R+(ζ)

]
= −

n−1

∑
ℓ=−(n−1)

log(exp(−iΩℓ(x, t)))
∫

Γℓ

ζkdζ

R(ζ)
,
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−bj −aj


 0 ir(z)

eA−j (x,t)

ieA−j (x,t)

r(z) 0




[
1 0

ie2ϕ(z;x,t)

r(z) 1

]

[
1 0

− ie2ϕ(z;x,t)

r(z) 1

]

aj bj


 0 −ie−A+j (x,t)

r(z)
−ir(z)

e−A+j (x,t) 0




[
1 − ie−2ϕ(z;x,t)

r(z)
0 1

]

[
1 ie−2ϕ(z;x,t)

r(z)
0 1

]

· · ·

FIGURE 7. Jump contours and jump matrices associated with R(z; x, t) near
each interval. ϕ(z; x, t) = φ(z; x, t) + h(z; x, t).

indexed by k = 0, 1, 2, . . . , 2n − 1. Note that the right-hand side of (2.14) and the coefficients
of the unknowns A±j(x, t) are all purely imaginary for each k. Therefore, A±j(x, t) are real-
valued. This is alarming at first; however, the coefficient matrix for this linear system is
independent of (x, t), and the right-hand side is bounded in (x, t) (even though Ωℓ(x, t) ∈
R may, in principle, grow unboundedly). This structure ensures that A±j(x, t) ∈ R are
bounded in (x, t). The integrals that make up linear system (2.14) are again computed nu-
merically via Gauss–Chebyshev quadrature and by employing a suitable basis of polynomi-
als. In particular, we now use

qk(x) =
n

∏
j=−n,j ̸=0,k

(x − νj), k = ±1, . . . ,±n,

where νj denotes the midpoint of the jth band ((aj, bj) if j > 0 or (−b−j,−a−j) if j < 0).
We now make a global definition and introduce an exponent:

(2.15) R(z) := S(z)eh(z;x,t)σ3 and ϕ(z; x, t) := h(z; x, t) + g(z; x, t)− θ(z; x, t).

Note that R(z) =
[
1 1

]
+ O(z−1) as z → ∞. Since the transformations Y(z) 7→ S(z) 7→

R(z) involve right-multiplications by diagonal unimodular matrices near z = ∞, it follows
from (1.13) that

(2.16) u(x, t) = lim
z→∞

2z2(r1(z; x, t)r2(z; x, t)− 1).

If z ∈ Γℓ, then h+(z; x, t)− h−(z; x, t) + iΩℓ(x, t) = log(exp(−iΩℓ(x, t)) + iΩℓ(x, t) = i2kπ

for some k ∈ Z, so R(z) has no jumps across the gaps Γℓ. The jump conditions satisfied by
R(z) are described in Figure 7. This final RHP satisfied by R(z) is again treated numerically
by using appropriate basis functions and an ansatz involving appropriate weighted Cauchy
transforms, similar to (2.2). More specifically, we use Laurent polynomials for the compo-
nents on the circular contours and appropriate Chebyshev polynomials and their weight
functions for the components on Σ+ ∪ Σ−, capturing the endpoint behavior of R(z), which
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is exactly the same as in (2.9). This approach closely follows the computational framework
in [3].

Remark 2.2. This method could, in principle, be sped up significantly by considering r with a com-
mon analytic extension to a region containing [−bn, bn]. In this case, the 2n circular jump contours
can be replaced by a single large one. See [2, Appendix A].

Note that the gap in the (x, t)-plane for t > 0 between the regions described in Section 2.1
and Section 2.2 disappears at t = 0, allowing us to compute the soliton gas primitive poten-
tials quickly and accurately for all x ∈ R.

3. NONLINEAR SUPERPOSITION OF A PURE SOLITON GAS WITH SOLITONS

It is possible to insert a multi-soliton into a soliton gas by supplying suitable residue
conditions for the RHP satisfied by Y(z) for a number of simple poles. In this case, we
consider solving the following RHP:

Riemann–Hilbert Problem 2 (KdV soliton gas with solitons). Let (x, t) ∈ R × R+ be fixed.
Find a 1 × 2 (row vector-valued) function N(λ) ≡ N(λ; x, t) with the following properties:

Analyticity: N(λ) is analytic for λ ∈ C \ cl(iΣ+ ∪ iΣ−), admitting continuous bound-
ary values on iΣ+ ∪ iΣ−, with the exception of simple poles at λ = ±iκj, κj > 0,
j = 1, 2, . . . , N, in the complement of the collection of intervals cl(iΣ+ ∪ iΣ−).
Jump conditions: The boundary values N+(λ) (resp. N−(λ)) from left (resp. from
right) are related via

N+(λ) = N−(λ)

[
1 0

−2ir1(λ)e2i(xλ+4tλ3) 1

]
, λ ∈ i(aj, bj),(3.1)

N+(λ) = N−(λ)

[
1 2ir1(λ)e−2i(λx+4tλ3)

0 1

]
, λ ∈ i(−bj,−aj), j = 1, 2, . . . , n.(3.2)

Residue conditions: At each simple pole λ = ±iκj, j = 1, 2, . . . , N, N(z) satisfies

Res
λ=iκj

N(z) = lim
λ→iκj

N(z)

[
0 0

iχje
2i(iκjx−4iκ3

j t) 0

]
,(3.3)

Res
λ=−iκj

N(z) = lim
λ→−iκj

N(z)

[
0 −iχje

−2i(iκjx−4iκ3
j t)

0 0

]
,(3.4)

with norming constants χj ∈ R+ \ {0}.

Normalization: N(λ) =
[
1 1

]
+ O(λ−1) as λ → ∞.

Symmetry condition: N(−λ) = N(λ)

[
0 1
1 0

]
.

As with Riemann–Hilbert Problem 1, we rotate the λ-plane and consider the related func-
tion Y(z) := N(iz). The jump contours and pole locations z = ±κj for Y(z) are then on
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FIGURE 8. A KdV soliton gas with r1(λ) supported on two pairs of bands.
In the notation of (1.5), I1 = (1, 2), I2 = (2.5, 3) with f1(z) = 100, f2(z) = 1
and αj = β j =

1
2 , j = 1, 2. The three solitons superimposed are associated

with κ1 = 0.8, κ2 = 2.25, and κ3 = 3.5 and the norming constants χ1 = 106,
χ2 = 105, χ3 = 10−12. Bottom panel: The same solution plotted along the ray
x/t = −32.

the real axis. The solution u(x, t) of the KdV equation (1.1) is obtained from (1.13). In Fig-
ure 8, we present the computed large-time evolution of a soliton gas supported on two pairs
of bands, nonlinearly superimposed with three solitons. In the notation of (1.5), we choose
f1(z) to be much larger than f2(z). We also note here that our method is by no means limited
to constant functions f j(z) in (1.5) (see Figure 11).

3.1. The solution procedure. An overview of our procedure is as follows: We first ignore
the poles in Riemann–Hilbert Problem 2 (in the rotated plane of z = −iλ) and compute
the matrix solution4 P(z), normalized so that P(z) → I as z → ∞, and use P(z) as a global
parametrix for the RHP with poles, reducing it to a discrete finite-dimensional linear algebra
problem. We solve the discrete problem, computing the solution S(z), and superpose its
solution via S(z)P(z) to compute the nonlinear superposition of solitons with soliton gasses.
We now describe the steps in this procedure in more detail.

4A matrix solution ceases to exist at a set of isolated points (x, t), but we ignore this behavior for our numerical
purposes just as in [5] and [13].
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FIGURE 9. A KdV soliton gas with r1(λ) supported on one pair of bands. In
the notation of (1.5), I1 = (1.5, 2.5) with f1(z) = 1 and α1 = β1 = 1

2 . The
superimposed soliton is associated with κ1 = 3 and the norming constant
χ1 = 10−4.

To handle potential exponential growth in the residue conditions, we flip their triangu-
larities as needed via the transformation

Ŷ(z) = Y(z)v(z)σ3 , v(z) = ∏
j∈K

z − κj

z + κj
,
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FIGURE 10. A KdV soliton gas with r1(λ) supported on one pair of bands.
In the notation of (1.5), I1 = (1.5, 2.5) with f1(z) = 1 and α1 = β1 = 1

2 . The
superimposed soliton is associated with κ1 = 1 and the norming constant
χ1 = 10.

where K is an index set corresponding to “large” residue conditions. In particular, for some
constant c > 0, we define

K = K(x, t) =
{

j :
∣∣∣χje

8κ3
j t−2κjx

∣∣∣ > c
}

,

in the quiescent region and

K =
{

j :
∣∣∣χje

8κ3
j t−2κjx+2g(z)+2h(z)

∣∣∣ > c
}

,
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FIGURE 11. A KdV soliton gas with r1(λ) supported on five pairs of bands,
nonlinearly superimposed with five solitons. In the notation of (1.5), I1 =
(0.25, 0.5), I2 = (0.8, 1.2), I3 = (1.5, 2), I4 = (2.5, 3), and I5 = (4, 5) with
f1(z) = (z− 0.375)2 + 1, f2(z) = (z− 1)4 + 1, f3(z) = (z− 1.75)6 + 1, f4(z) =
exp(z − 2.75) + 1, f5(z) = exp(−(z − 4.5)2) + 1 and α1 = β1 = − 1

2 , α2 =

β2 = 1
2 , α3 = 1

2 , β3 = − 1
2 , α4 = − 1

2 , β4 = 1
2 , α5 = β5 = − 1

2 . The five solitons
are associated with the eigenvalue parameters κ1 = 0.1, κ2 = 0.7, κ3 = 2.25,
κ4 = 3.5, κ5 = 5.5 and the norming constants χ1 = 105, χ2 = 1000, χ3 = 100,
χ4 = 10, χ5 = 10−6.

in the unmodulated region. Our implementation takes c = 10 as the default value.
This transformation has the effect of modifying the residue conditions to

Res
z=κj

Ŷ(z) = lim
z→κj

Ŷ(z)

[
0 0

χje
8κ3

j t−2κjxv2(κj) 0

]
, j /∈ K,

Res
z=κj

Ŷ(z) = lim
z→κj

Ŷ(z)


0 e

−8κ3
j t+2κj x

χjv′(κj)2

0 0


 , j ∈ K.

The residue conditions on the negative real axis follow from the symmetry condition.
In the unmodulated region, the disjoint disks Dj are assumed to be sufficiently small so

as not to contain the poles κj. The steepest descent deformations then result in the residue
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conditions

Res
z=κj

R(z) = lim
z→κj

R(z)

[
0 0

χje
8κ3

j t−2κjx+2g(κj)+2h(κj)v2(κj) 0

]
, j /∈ K,

Res
z=κj

R(z) = lim
z→κj

R(z)


0 e

−8κ3
j t+2κj x−2g(κj)−2h(κj)

χjv′(κj)2

0 0


 , j ∈ K.

Once the matrix solution P is obtained, the residue conditions that S(z) = R(z)P(z)−1

satisfies are computed through the following formula: Given a residue condition

Res
z=±κj

R(z) = lim
z→±κj

R(z)Ξ±j,

of R, the corresponding residue condition of S is given by

Res
z=±κj

S(z) = lim
z→±κj

S(z)P(±κj)Ξ±jP(±κj)
−1

(
I − P′(±κj)Ξ±jP(±κj)

−1
)−1

,

where P′(z) denotes the componentwise derivative of P(z). We compute P′(±κj) by numer-
ically expanding P(z) in a Laurent series in a small circle centered at ±κj.

4. EXAMPLES, DEMONSTRATION OF CONVERGENCE, AND PERFORMANCE

4.1. Examples. In this subsection, we enumerate the examples found throughout this paper.

4.1.1. 5 pairs of bands with 5 solitons. In Figures 1 and 11, we plot a soliton gas corresponding
to r1(λ) supported on five pairs of bands, nonlinearly superimposed with five solitons. In
the notation of (1.5), Figure 11 considers variable f j and various endpoint behaviors αj, β j.

4.1.2. 5 pairs of bands. In Figure 2, we plot a pure soliton gas corresponding to r1(λ) sup-
ported on five pairs of bands, including for large negative x at t = 100.

4.1.3. 1 pair of bands with 2 solitons. In Figure 3, we consider a soliton gas corresponding
to r1(λ) supported on one pair of bands, nonlinearly superimposed with two solitons. We
include a density plot of this solution in the (x, t)-plane outside of the wedge-shaped region
where our method begins to break down.

4.1.4. 2 pairs of bands. In Figure 4, we consider a pure soliton gas corresponding to r1(λ)

supported on two pairs of bands. We plot its tail at t = 100 and its behavior along the ray
x/t = −32.

4.1.5. 2 pairs of bands with 3 solitons. In Figure 8, we include the same plots as Figure 4, but
with the solution nonlinearly superimposed with three solitons.

4.1.6. 1 pair of bands with a taller soliton. In Figure 9, we plot the time evolution of a soliton
gas corresponding to r1(λ) supported on one pair of bands, nonlinearly superimposed with
one taller soliton, showing the soliton escape the soliton gas.
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FIGURE 12. Pointwise errors of various numbers for collocation points. PPI
(Points Per Interval) denotes the number of collocation points used per inter-
val Ij, and 10 times that number of points are used on each circle. 50 PPI is
used as the exact solution in comparisons.

4.1.7. 1 pair of bands with a shorter soliton. In Figure 10, we plot the time evolution of a soliton
gas corresponding to r1(λ) supported on one pair of bands, nonlinearly superimposed with
one shorter soliton, showing the soliton becoming trapped within the soliton gas.

4.2. Convergence. In Figure 12, we demonstrate the convergence of our computational
method as we increase the number of collocation points used on each component of the
jump contour associated with the RHP that is treated numerically. We plot the absolute
pointwise error made in computing a soliton gas potential

(4.1) Ep(x) := |up(x, 0)− utrue(x, 0)|,

where p refers to the number of collocation points used on each interval, denoted by “PPI”
in Figure 12. Here, utrue(x, 0) denotes the solution computed with a large value of p. The
soliton gas potential computed for Figure 12 is associated with r1(λ) supported on two pairs
of bands (in the notation of (1.5)) I1 = (1.2, 2), I2 = (2.5, 3) with f1(z) = 100 and f2(z) = 1
and αj = β j =

1
2 , j = 1, 2. This soliton gas potential is also nonlinearly superimposed with

two solitons associated with the eigenvalue parameters κ1 = 1, κ2 = 4 and the norming
constants χ1 = 10, χ2 = 10−10. While we observe that our method is quite accurate, some
precision is lost due to the large condition number of the collocation matrix (empirically on
the order of 107). Future work will aim to improve the conditioning of this linear system.

Finally, in all of the plots presented in this paper, 20 collocation points are used on each
interval and 120 points are used on each circle in the jump contour for the RHP treated
numerically.

4.3. Notes on performance. Perhaps the most attractive feature of our method is that it is
trivially parallelizable. Since x and t are only parameters in the RHP, all computations in this
paper can, in principle, be done in the time it takes to solve a single RHP, i.e., a pointwise
evaluation of u(x, t). With this perspective in mind, we give rough pointwise evaluation
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runtimes on a standard laptop for the solution plots above: Figures 1 and 11 require roughly
0.7 seconds in the unmodulated region and 0.08 seconds in the quiescent region. Figure 2
requires roughly 0.4 seconds in the unmodulated region and 2 ms in the quiescent region.
Figure 3 requires roughly 0.03 seconds in the unmodulated region and 5 ms in the quiescent
region. Figure 4 requires roughly 0.02 seconds in the unmodulated region and 0.4 ms in
the quiescent region. Figure 8 requires roughly 0.1 seconds in the unmodulated region and
0.02 seconds in the quiescent region. Figures 9 and 10 require roughly 0.02 seconds in the
unmodulated region and 3 ms in the quiescent region.
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