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ABSTRACT. General rogue waves of infinite order constitute a family of solutions of the focusing
nonlinear Schrödinger equation that have recently been identified in a variety of asymptotic limits
such as high-order iteration of Bäcklund transformations and semiclassical focusing of pulses with
specific amplitude profiles. These solutions have compelling properties such as finite L2-norm con-
trasted with anomalously slow temporal decay in the absence of coherent structures. In this paper
we investigate the asymptotic behavior of general rogue waves of infinite order in a parametric limit
in which the solution becomes small uniformly on compact sets while the L2-norm remains fixed.
We show that the solution is primarily concentrated on one side of a specific curve in logarithmically
rescaled space-time coordinates, and we obtain the leading-order asymptotic behavior of the solution
in this region in terms of elliptic functions as well as near the boundary curve in terms of modulated
solitons. The asymptotic formula captures the fixed L2-norm even as the solution becomes uniformly
small.
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1. INTRODUCTION

1.1. General rogue waves of infinite order. (General) rogue waves of infinite order Ψ(X, T; G, B)
are particular solutions of the focusing nonlinear Schrödinger equation

(1.1) iQT +
1
2

QXX + |Q|2Q = 0

that have recently appeared in numerous applications. In [23], one of these solutions was conjec-
tured to describe the weakly dispersive regularization of an infinite-amplitude collapse solution
of the dispersionless focusing nonlinear Schrödinger equation, and a version of this result has
recently been proved rigorously [11]. The same family of solutions arises in the fixed-dispersion
setting when Bäcklund transformations are repeatedly iterated. This was first observed in the
case of high-order fundamental rogue-wave solutions [4] (the application for which the solutions
are named) and also high-order soliton solutions [3]. Later it was shown that the same limiting
objects describe a family of solutions continuously interpolating between high-order rogue waves
and solitons [8], and in fact one can obtain the same limit via repeated Bäcklund iterations starting
with an arbitrary seed solution [5]. Evaluating at T = 0 one obtains functions of X that play a
role in boundary-layer theory for the sharp-line Maxwell-Bloch system [20] and the large-degree
asymptotics of rational solutions of the third Painlevé equation [1].

The solutions Ψ(X, T; G, B) are parametrized by a scalar B > 0 and certain 2 × 2 constant ma-
trices G. They are defined in terms of the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 1. Let (X, T) ∈ R2 and B > 0 be fixed and let G be a 2× 2 matrix satisfying
det(G) = 1 and G∗ = σ2Gσ2. Find a 2 × 2 matrix P(Λ; X, T, G, B) with the following properties:

Analyticity: P(Λ; X, T, G, B) is analytic in Λ for |Λ| ̸= 1, and it takes continuous boundary
values on the clockwise-oriented unit circle from the interior and exterior.
Jump condition: The boundary values1 on the unit circle are related as follows:

(1.2) P+(Λ; X, T, G, B) = P−(Λ; X, T, G, B)e−i(ΛX+Λ2T+2BΛ−1)σ3 Gei(ΛX+Λ2T+2BΛ−1)σ3 , |Λ| = 1.

Normalization: P(Λ; X, T, G, B) → I as Λ → ∞.

1We use the standard convention that a subscript + (resp., −) denotes a boundary value taken on an oriented contour
arc from the left (resp., right).
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Here σ2 and σ3 denote standard Pauli matrices

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
,

and G∗ means the complex-conjugate matrix (no transpose). In general any matrix G satisfying
det(G) = 1 and G∗ = σ2Gσ2 as in Riemann-Hilbert Problem 1 can be written as

(1.3) G = G(a, b) =
1√

|a|2 + |b|2

[
a b∗

−b a∗

]
, (a, b) ∈ C2 \ {(0, 0)}.

Riemann-Hilbert Problem 1 has a unique solution that depends real-analytically on (X, T) ∈ R2

[6, Proposition 1.1], and the special solution Ψ(X, T; G, B) is defined in terms of P(Λ; X, T, G, B)
via

(1.4) Ψ(X, T; G, B) := 2i lim
Λ→∞

ΛP12(X, T; G, B).

Without loss of generality we take B = 1 thanks to the scaling symmetry [6, Proposition 1.2]

(1.5) Ψ(X, T; G, B) = BΨ(BX, B2T; G, 1),

so we will write Ψ(X, T; G) := Ψ(X, T; G, 1) and omit B = 1 from the argument list of functions
related to P. On the other hand, the dependence on G = G(a, b) is more consequential.

1.2. Dependence on parameters. In recent work [6], numerous properties of the special solution
Ψ(X, T; G) were established for fixed values of the parameters (a, b) ∈ C2 \ {(0, 0)} including a
Fredholm determinant representation and the asymptotic behavior in spacetime as (X, T) → ∞
in the entire plane. As part of the same work, a software package [7] was developed to com-
pute Ψ(X, T; G) at virtually any point in the (X, T)-plane based on numerical solution of suitable
Riemann-Hilbert problem representations (modifications of Riemann-Hilbert Problem 1). One key
result is:

Theorem 1.1 ([6, Theorem 1.9]). Let G = G(a, b) be as in (1.3). If also ab ̸= 0, then Ψ(⋄, T; G) ∈
L2(R) for all T ∈ R with ∥Ψ(⋄, T; G)∥L2(R) =

√
8.

L2(R) is a natural space on which the Cauchy problem for (1.1) is globally well posed [25].
Most solutions in this space obey soliton resolution, in that either they undergo modified scat-
tering with dispersive decay in L∞(R) proportional to |T|− 1

2 or they have a soliton component
that does not decay at all in L∞(R) [9]. However, the general rogue waves of infinite order with
ab ̸= 0 are exceptional solutions that exhibit anomalously slow temporal decay [6, Theorem 1.22]:
Ψ(X, T; G) ∼ |T|− 1

3 as |T| → +∞ (upper and lower bounds). This property makes these solutions
very interesting from the point of view of mathematical analysis as well as physical applications.

The condition ab ̸= 0 is essential for Theorem 1.1 because otherwise the solution is trivial:

Proposition 1.2 ([6, Proposition 1.8]). If ab = 0, then Ψ(X, T; G) = 0 for all (X, T) ∈ R2.

This result relies on the fact that Riemann-Hilbert Problem 1 can be solved explicitly if either
a = 0 or b = 0 (see, for instance (2.1) below). The solution Ψ(X, T; G(a, b)) depends continuously
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on (a, b) for fixed (X, T), so Theorem 1.1 and Proposition 1.2 together imply that

(1.6) lim
ab→0
ab ̸=0

∥Ψ(⋄, T; G(a, b)∥L2(R) =
√

8 but ∀(X, T) ∈ R2 : lim
ab→0
ab ̸=0

Ψ(X, T; G(a, b)) = 0.

While this is not a contradiction, it deserves a proper explanation in terms of the asymptotic be-
havior of the solution as ab → 0. Does the solution Ψ(⋄, T; G(a, b)) decay in L∞(R) as ab → 0 for
fixed T similar to dispersive decay conserving the L2-norm? Or perhaps the solution undergoes
translation to X = ∞ as ab → 0 for fixed T like a traveling pulse?

Numerical computations done with the software package [7] described in the paper [6] suggest
that it is a combination of these two scenarios that characterizes the limit ab → 0. Figure 2 shows
the behavior of Ψ(X, T; G(a, b)) as a decreases from a = 1 to a = 1

4 for fixed b = 1. There evidently

FIGURE 1. Surface plots (left) and density plots (right) of |Ψ(X, T; G(a, b))| com-
puted with the software package RogueWaveInfinite.jl, for b = 1. From top to
bottom: a = 1, a = 1

2 , and a = 1
4 .

emerges a quiescent unbounded region of the (X, T)-plane extending to X = −∞ in which the
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solution becomes small as a → 0. Indeed, the small-amplitude oscillations visible in the wedge-
shaped region containing the the negative X-axis when a = b = 1 appear to decay as a → 0,
while those on the opposite side become amplified as a → 0. In fact, these amplified oscillations
seem to merge with the larger-amplitude waves present for a = b = 1 in wedge-shaped regions
surrounding the positive and negative T-axes. Figure 2 shows the behavior of the solution close to
the origin (X, T) = (0, 0) (the peak location of the solution if a = b = 1) as a decreases from a = 1
to a = 1

256 . Evidently, the peak of the solution both becomes smaller and shifts somewhat toward

FIGURE 2. Surface plots of |Ψ(X, T; G(a, b))| computed with the software package
RogueWaveInfinite.jl, for b = 1. From left to right: a = 1, a = 1

8 , a = 1
64 , and

a = 1
256 .

the positive X direction as a → 0. Plots of the time-slices Ψ(X, T = 0; G(a, b)) as a becomes small
are shown in Figure 3.
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FIGURE 3. Plots of Ψ(X, 0; G(a, b)) computed with the software package
RogueWaveInfinite.jl, for b = 1. From left to right: a = 1, a = 1

8 , a = 1
64 ,

and a = 1
256 . Solid lines: |Ψ(X, 0; G(a, b))|; dashed lines: Re(Ψ(X, 0; G(a, b))). The

solution is real valued for T = 0 since ab ∈ R.

Similar behavior of the solution but with X replaced by −X occurs if instead b → 0 with a fixed,
due to the following symmetry:

Proposition 1.3 ([6, Proposition 1.3]). Ψ(X, T; G(a, b)) = Ψ(−X, T; G(b, a)).

1.3. Main results. The purpose of this paper is to provide a rigorous explanation for the statement
(1.6) by describing the wave profile in the asymptotic limit ab → 0. We find that in this limit,
Ψ(X, T; G(a, b)) is modeled by a gradually dispersing elliptic wavetrain with slowly decaying
amplitude.

Using Proposition 1.3, we focus on the case that a → 0 for fixed b ̸= 0. The smallness of a is
measured by the quantity

(1.7) M := −1
2

ln

(
|a|√

|a|2 + |b|2

)
> 0
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and we introduce logarithmically rescaled coordinates (χ, τ) defined by

(1.8) X = M2χ and T = M3τ.

Thus the limit a → 0 corresponds to M → +∞. Also introducing the rescaled complex variable z
by setting

(1.9) Λ = M−1z,

we see that with B = 1 the exponent in Riemann-Hilbert Problem 1 is expressed in the rescaled
variables as:

(1.10) (ΛX + Λ2T − 2Λ−1)

∣∣∣∣
X=M2χ,T=M3τ,Λ=M−1z

= Mϑ(z; χ, τ),

where

(1.11) ϑ(z) = ϑ(z; χ, τ) := χz + τz2 − 2z−1.

When χ > −(54τ2)
1
3 , the function z 7→ ϑ(z; χ, τ) has a complex-conjugate pair of critical points

z = ξ, ξ∗ depending real-analytically on (χ, τ) with Im(ξ) > 0, and in Section 2.1 we show that the
condition Re(iϑ(ξ; χ, τ)) = −1 determines χ as an even real-analytic function of τ denoted χc(τ).
This function satisfies χc(τ) > −(54τ2)

1
3 and χc(0) = 1

8 , and χ = χc(τ) satisfies the polynomial
equation F(χ, τ) = 0, where

(1.12) F(χ, τ) := −4096τ4 + 1259712τ6 + 55296τ4χ − 186624τ4χ2

+ 69984τ4χ3 − 128τ2χ4 + 864τ2χ5 + 1296τ2χ6 − χ8 + 8χ9.

In the right-hand pane of Figure 4, the curve (χ, τ) = (χc(τ), τ) is superimposed on the density
plot of the solution |Ψ(X, T; G(a, b))| with a = 10−3 and b =

√
1 − a2, corresponding to M ≈ 3.45.

FIGURE 4. Plots of |Ψ(X, T; G(a, b))| computed with the software package
RogueWaveInfinite.jl, for a = 10−3 and b =

√
1 − a2 so M = 3

2 ln(10) ≈ 3.45.
Left-pane: surface plot, right-pane: density plot with the critical curve (χ, τ) =
(χc(τ), τ) plotted in light blue in the (X, T) plane. Also shown with red dashed
lines are the curves Φn(χ, τ; M) = 0 for n = 0, 1, 2, 3 (see Theorem 1.6).

In Section 2.3 below we prove that there is a well-defined continuous and real-valued func-
tion λ = λ(χ, τ) defined for χ > χc(τ) with the following properties. Firstly, when χ = χc(τ),
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−χ/(2τ) + τλ(χ, τ)/2 is the unique real critical point of z 7→ ϑ(z; χ, τ). Secondly, for χ > χc(τ),
λ is a smooth function of (χ, τ) for which the quartic polynomial

(1.13) R(z)2 := z4 + τλz3 +

[
3
4

τ2λ2 − 1
2

χλ

]
z2 +

16τ

(τ2λ − χ)3 z +
4

(τ2λ − χ)2

has a Schwarz-symmetric quartet of distinct complex roots z = α, β, α∗, β∗ labeled so that Im(α) >

0, Im(β) > 0, Re(α) ≤ Re(β) and if Re(α) = Re(β), then Im(α) > Im(β). Thirdly, taking the
branch cuts of R(z) to be a Schwarz-symmetric pair of arcs, one of which joins α to β in the upper
half-plane, with the branch chosen so that R(z) = z2 + O(z) as z → ∞, the condition

(1.14)
∫ α

α∗

2τz + χ − τ2λ

z2 R(z) dz = 2i

holds (the integrand has zero residue at z = 0 so the integral is independent of any Schwarz-
symmetric path avoiding the origin). Then, since the roots of R(z)2 are distinct for χ > χc(τ), α

and β are also smooth functions of (χ, τ) on this region, and there exists a well-defined antideriv-
ative h(z) = h(z; χ, τ) of the integrand in (1.14) in the neighborhood of z = ∞ with the integration
constant determined so that h(z) = ϑ(z; χ, τ) + O(z−1) as z → ∞. Although z 7→ h′(z) is mero-
morphic on R for χ > χc(τ) with zero residue at the pole z = 0, the continuation of h(z) from a
neighborhood of z = ∞ along R from z > 0 and z < 0 avoiding the pole results respectively in
two different values h+(z) and h−(z) differing by a constant that we denote by ∆(χ, τ):

(1.15) ∆(χ, τ) := h+(z; χ, τ)− h−(z; χ, τ), χ > χc(τ).

This is a real-valued smooth function of (χ, τ) on the indicated domain, and an explicit formula for
it is given in (2.120) below. Its partial derivatives are explicitly given by (see (2.38) and (2.42)–(2.44)
below)

(1.16)
∂∆
∂χ

= −
[

1
2πi

∫ β∗

β

dz
R(z)

]−1

,
∂∆
∂τ

=
1
2
(α + β + α∗ + β∗)

∂∆
∂χ

.

Assuming that Re(α) < Re(β), all four roots lie on a single circle with center x ∈ R, and we may
therefore define angles θα := arg(α(χ, τ)− x) and θβ := arg(β(χ, τ)− x) with 0 < θβ < θα < π.
From these, we define

(1.17) m1(χ, τ) :=
sin(θα) sin(θβ)

sin2( 1
2 (θα + θβ))

,

and note that the definition extends by continuity to the case that Re(α) = Re(β) with the limiting
value being given by m1 = 4Im(α)Im(β)/(Im(α) + Im(β))2.

With these ingredients, our main result describing Ψ(X, T; G) for large M is then the following.

Theorem 1.4 (Asymptotic behavior of Ψ(X, T; G(a, b)) for small a / large M). Assume that a and
M > 0 are related by (1.7). Let K be a compact subset of R2 with coordinates (χ, τ) satisfying χ < χc(τ).
Then in the limit M → +∞, (χ, τ) 7→ MΨ(M2χ, M3τ; G(a, b)) is uniformly exponentially small on K .
On the other hand, if K is a compact subset of (χ, τ) ∈ R2 for which χ > χc(τ), then in the same limit,

(1.18) MΨ(M2χ, M3τ; G(a, b)) = e−i arg(ab)Ψ̆(χ, τ; M) + O(M−1)
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holds uniformly for (χ, τ) ∈ K . Here, Ψ̆(χ, τ; M) is given explicitly by (2.226)–(2.227) below, with
modulus satisfying

(1.19) |Ψ̆(χ, τ; M)|2 = (Im(α(χ, τ)) + Im(β(χ, τ)))2

− 4Im(α(χ, τ))Im(β(χ, τ))sn2
(

K(m1(χ, τ))

π
(M∆(χ, τ) + π); m1(χ, τ)

)
,

where the elliptic parameter m1(χ, τ) ∈ (0, 1) ranges from m1(χc(τ), τ) = 1 to m1(+∞, τ) = 0, K =

K(m) denotes the complete elliptic integral of the first kind, and α(χ, τ), β(χ, τ) along with their complex
conjugates constitute an exact solution of the elliptic quasilinear system (2.55) of Whitham modulation
equations in Riemann-invariant form obtained by Forest and Lee [18] for the rescaled focusing nonlinear
Schrödinger equation in the form

(1.20) iM−1 ∂q
∂τ

+
1
2

M−2 ∂2q
∂χ2 + |q|2q = 0.

Also, Ψ̆(⋄, τ; M) ∈ L2((χc(τ),+∞)) and

(1.21)
∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 8 + O(M−1), M → +∞.

Note that according to (1.19), the amplitude |Ψ̆(χ, τ; M)|2 of the approximation valid for χ >

χc(τ) is oscillatory (wavelength proportional to M−1 as a function of χ, or to M as a function
of X) and varies between the lower bound of |Im(α(χ, τ) − β(χ, τ))| and the upper bound of
Im(α(χ, τ) + β(χ, τ)), both of which are M-independent functions of (χ, τ) and hence have char-
acteristic length scales of M2 as functions of X. It turns out that when τ = 0, one has β(χ, τ) =

−α(χ, τ)∗, so the lower bound vanishes. The upper bound expressed in terms of X = M2χ for
χ > χc(0) = 1

8 is compared with plots of Ψ(X, 0; G) for two different small values of a in Figure 5.

One implication of this theorem is that, since each compact subset K ′ of the (X, T)-plane is
eventually contained as M → +∞ within a fixed closed disk K centered at (χ, τ) = (0, 0) of
sufficiently small radius in the (χ, τ)-plane that χ < χc(τ) holds on K , we see that (X, T) 7→
Ψ(X, T; G(a, b)) tends uniformly to zero on compact sets K ′ as M → +∞. In this sense, general
rogue waves of infinite order are small locally uniformly when ab is small. However, in light of
Theorem 1.1 they cannot be small in L2(R), and (1.21) shows that the leading approximation of
Ψ(X, T; G(a, b)) asserted in Theorem 1.4 correctly captures the L2-norm as the solution spreads
and decays in the limit a → 0. Indeed, combining |Ψ(M2χ, M3τ; G(a, b))|2 = M−2|Ψ̆(χ, τ; M)|2 +
O(M−3) with X = M2χ and hence dX = M2 dχ, and neglecting contributions for χ < χc(τ), we
can approximate

(1.22)
∫

R
|Ψ(X, M3τ; G(a, b))|2 dX ≈

∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 8,

so the L2-norm is not actually lost in the limit that a → 0. A more precise statement is:
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FIGURE 5. Plots of |Ψ(X, 0; G)| (solid) and Re(Ψ(X, 0; G)) (dashed) computed with
RogueWaveInfinite.jl with G = G(a, b), b =

√
1 − a2. Top: a = 10−3, bottom

a = 10−4. Because ab > 0, Ψ(X, 0; G) is real valued. In both plots, the amplitude
upper bound of Im(α(M−2X, 0) + β(M−2X, 0)) is plotted for X > 1

8 M2 in pink.

Corollary 1.5 (Convergence in L2(R)). We have

(1.23) lim
M→+∞

∥MΨ(M2⋄, M3τ; G(a, b))− e−i arg(ab)Ψ̆(⋄, τ; M)∥L2(R) = 0,

where Ψ̆(χ, τ; M) is extended by zero to χ < χc(τ).

The proof will given in Section 2.11 below. The bulk of Section 2 is occupied with the proof of
Theorem 1.4.

The small-a asymptotic behavior described in Theorem 1.4 is not uniform for (χ, τ) on any
neighborhood of a point (χc(τ), τ) on the critical curve. Our next result concerns the transitional
regime where (χ, τ) is allowed to penetrate into the region χ > χc(τ) from the region χ < χc(τ).
To quantify the extent of this transition region in the (χ, τ)-plane, we recall the complex critical

point z = ξ(χ, τ) of the phase function z 7→ ϑ(z; χ, τ) = χz + τz2 − 2z−1 for χ > −
(
54τ2) 1

3 with
Im(ξ) > 0 and introduce the quantity

(1.24) d(χ, τ) := −i(ϑ(ξ(χ, τ); χ, τ)− i).

The curve (χ, τ) = (χc(τ), τ) coincides with the zero level Re(d(χ, τ)) = 0 and the domain χ >

χc(τ) corresponds to the region Re(d(χ, τ)) > 0. Because ξ(χ, τ) is a simple critical point of
z 7→ ϑ(z; χ, τ), ϑ′′(ξ(χ, τ); χ, τ) ̸= 0, and in Section 3.1 below a certain complex-valued continuous
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function η(χ, τ) is defined with the property that η(χ, τ)2 = iϑ′′(ξ(χ, τ); χ, τ). Our theorem is then
the following.

Theorem 1.6 (Behavior of Ψ(X, T; G(a, b)) at the edge for small a). Assume that a and M > 0 are
related by (1.7). Fix constants K− > 0 sufficiently small and K+ > 0 arbitrary, and consider the region S
of the (χ, τ)-plane defined by the inequalities

(1.25) S :=
{
(χ, τ) ∈ R2 : −K− ≤ Re(2d(χ, τ)) ≤ K+

ln(M)

M

}
.

Also fix an arbitrary compact subset K of the domain χ < χc(τ). For n ∈ Z≥0, set

(1.26) Dn(χ, τ; M) := (−1)n e2Md(χ,τ)M−(n+ 1
2 )

2πγ2
n(2 Im(ξ(χ, τ))η(χ, τ))2n+1 ,

where

(1.27) γn =

√
2n

√
πn!

,

and set

(1.28) Φn(χ, τ; M) := ln(|Dn(χ, τ; M)|), Ωn(χ, τ; M) := arg(Dn(χ, τ; M)).

Then defining

(1.29) ψn(χ, τ; M) := 2Im(ξ(χ, τ))sech(Φn(χ, τ; M))eiΩn(χ,τ;M),

the asymptotic formula

(1.30) MΨ(M2χ, M3τ; G(a, b)) = e−i arg(ab)
⌊K+⌉

∑
n=0

ψn(χ, τ; M) + O(M− 1
2 ), M → +∞

holds uniformly for (χ, τ) ∈ S ∪K . Here, ⌊⋄⌉ denotes the nearest integer function that rounds up at the
half-integers.

The proof is given in Section 3. We also have the following corollary to Theorem 1.6 providing
more information about the function ψn(χ, τ; M) given by (1.29).

Corollary 1.7 (Soliton approximation). Let (χ0, τ0) be a point maximizing |ψn(χ, τ; M)|, i.e., satisfying
Φn(χ0, τ0; M) = 0. Set ξ0 := ξ(χ0, τ0) and Ω0

n := Ωn(χ0, τ0; M). Then

(1.31) ψn(χ0 + χ, τ0 + τ; M) = qn(χ, τ; M) + O(M−1), M → +∞

holds uniformly for χ = O(M−1) and τ = O(M−1), where

(1.32) qn(χ, τ; M) := 2 Im(ξ0)sech(2M Im(ξ0)[χ + 2 Re(ξ0)τ])eiΩ0
n e−2iM(Re(ξ0)χ+[Re(ξ0)

2−Im(ξ0)
2]τ)

is an exact soliton solution of the focusing nonlinear Schrödinger equation in the form (1.20) corresponding
to a simple eigenvalue ξ0 ∈ C+ of the Zakharov-Shabat eigenvalue problem.

The proof is given in Section 3.6. These results show that the elliptic wave that occupies the
domain χ > χc(τ) according to Theorem 1.4 degenerates at the boundary to a train of sech-
shaped pulses each of width proportional to M−1 and separated from its neighbors by a distance
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proportional to M−1 ln(M). The pulses are modulated solitons confined to curvilinear trajectories
Φn(χ, τ; M) = 0 (plotted in Figure 4) roughly parallel to the boundary curve χ = χc(τ), and
upon zooming in on a point on one of the trajectories at a scale proportional to the width of
the corresponding pulse one sees an exact soliton solution of (1.20) with the correct relationships
between amplitude, wavelength, velocity, wavenumber, and frequency. Note that the apparent
drift of the curves Φn(χ, τ; M) = 0 for larger n from the amplitude peaks in Figure 4 is a finite-M
effect.

The remainder of the article is devoted to the proofs of these results, making use of the following
proposition to work with renormalized versions of the parameters (a, b).

Proposition 1.8 ([6, Proposition 1.5]). For all (X, T) ∈ R2 and (a, b) ∈ C2 with ab ̸= 0,

(1.33) Ψ(X, T; G(a, b)) = e−i arg(ab)Ψ(X, T; G(a, b)),

where normalized parameters defined by

(1.34) a :=
|a|√

|a|2 + |b|2
and b :=

|b|√
|a|2 + |b|2

satisfy a, b > 0 with a2 + b2 = 1.

1.4. Acknowledgements. D. Bilman was supported by the National Science Foundation on grant
number DMS-2108029; P. D. Miller was supported by the National Science Foundation on grant
numbers DMS-1812625, DMS-2204896, and DMS-2508694. The authors would like to thank the
Isaac Newton Institute for Mathematical Sciences for support and hospitality during the pro-
gramme Dispersive Hydrodynamics (EPSRC Grant Number EP/R014604/1), as well as the Uni-
versity of Bristol where part of the work on this paper was undertaken. The computations in this
work were facilitated through the use of the advanced computational, storage, and networking
infrastructure provided by the Ohio Supercomputer Center (48-core Pitzer nodes) [21].

2. ASYMPTOTIC BEHAVIOR OF Ψ(X, T; G(a, b)) IN THE LIMIT a → 0: THE CASE χ ̸= χc(τ)

To study the limit a → 0, we assume without loss of generality (see Proposition 1.8) that the
parameters (a, b) are replaced by normalized parameters (a, b) with a > 0 and b > 0 and a2 + b2 =

1, provided we restore a phase factor of e−i arg(ab) at the end. Since a is small, it is useful to compare
the solution P(Λ; X, T, G(a,

√
1 − a2)) of Riemann-Hilbert Problem 1 with the limiting solution

P(Λ; X, T, G(0, 1)) which is given explicitly by (see [6, Appendix A]):

(2.1) P(Λ; X, T, G(0, 1)) =


 0 −e−2i(ΛX+Λ2T)

e2i(ΛX+Λ2T) 0

, |Λ| < 1,

e4iΛ−1σ3 , |Λ| > 1.

We therefore set

(2.2) N(Λ; X, T, a) := P(Λ; X, T, G(a,
√

1 − a2))P(Λ; X, T, G(0, 1))−1, |Λ| ̸= 1, a ∈ [0, 1].

Then, Ψ(X, T; G(a,
√

1 − a2)) = 2i limΛ→∞ ΛN12(Λ; X, T, a), and N(Λ; X, T, a) satisfies the condi-
tions of a related Riemann-Hilbert Problem:
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Riemann-Hilbert Problem 2. Let (X, T) ∈ R2, and let a ∈ [0, 1]. Find a 2 × 2 matrix N(Λ) =

N(Λ; X, T, a) with the following properties:

Analyticity: N(Λ) is analytic in Λ for |Λ| ̸= 1, and it takes continuous boundary values
on the clockwise-oriented unit circle from the interior and exterior.
Jump condition: The boundary values on the unit circle are related as follows:

(2.3) N+(Λ) = N−(Λ)e−i(ΛX+Λ2T−2Λ−1)σ3

[√
1 − a2 −a

a
√

1 − a2

]
ei(ΛX+Λ2T−2Λ−1)σ3 , |Λ| = 1.

Normalization: N(Λ) → I as Λ → ∞.

In terms of M > 0 defined by (1.7), according to (1.34) we have a = e−2M. Recall the scalings
(X, T, Λ) 7→ (χ, τ, z) given by (1.8)–(1.9). Without changing the problem in any essential way,
we may assume that the jump contour is any simple closed curve Γ in the z-plane that surrounds
the origin in the clockwise sense. The equivalent Riemann-Hilbert problem for S(z; χ, τ, M) :=
N(Λ, X, T, a) = N(M−1z; M2χ, M3τ, e−2M) is then the following.

Riemann-Hilbert Problem 3. Let (χ, τ) ∈ R2 and let M ∈ R. Find a 2× 2 matrix S(z) = S(z; χ, τ, M)

with the following properties:

Analyticity: S(z) is analytic in z for z ∈ C \ Γ, and it takes continuous boundary values on
Γ from the interior and exterior.
Jump condition: The boundary values are related by S+(z) = S−(z)VS(z) for z ∈ Γ, where

(2.4) VS(z) = VS(z; χ, τ, M) :=

[ √
1 − e−4M −e−2iM(ϑ(z;χ,τ)−i)

e2iM(ϑ(z;χ,τ)+i)
√

1 − e−4M

]
,

in which ϑ(z; χ, τ) is defined by (1.11).
Normalization: S(z) → I as z → ∞.

We assume that Γ is Schwarz-symmetric (with reflection reversing the orientation) and inde-
pendent of M. Then, it is easy to see that whenever S(z; χ, τ, M) is a solution of Riemann-Hilbert
Problem 3, so is σ2S(z∗; χ, τ, M)∗σ2. Since P(Λ; X, T, G) is uniquely determined from the condi-
tions of Riemann-Hilbert Problem 1, it follows that also S(z; χ, τ, M) is uniquely determined from
the conditions of Riemann-Hilbert Problem 3, and so the solution is necessarily Schwarz symmet-
ric in the sense that

(2.5) S(z; χ, τ, M) = σ2S(z∗; χ, τ, M)∗σ2

Since Ψ(X, T; G(a,
√

1 − a2)) = 2i limΛ→∞ ΛN12(Λ; X, T, a), we have

(2.6) MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) = 2i lim
z→∞

zS12(z; χ, τ, M).

2.1. Definition of χc(τ) and proof of Theorem 1.4 for χ < χc(τ). Noting the rapid convergence
to 1 of the diagonal elements of the jump matrix in (2.4), we will have a small-norm problem if the
contour Γ can be placed such that the rescaled exponents ±i(ϑ(z; χ, τ) ± i) of both off-diagonal
entries have strictly negative real parts uniformly on Γ. This will be the case if the region of the



INFINITE-ORDER ROGUE WAVES THAT ARE SMALL (BUT NOT SMALL IN L2) 13

complex z-plane defined by the inequalities −1 < Re(iϑ(z; χ, τ)) < 1 contains a Jordan curve Γ
surrounding the origin, a condition that depends on the coordinates (χ, τ).

Firstly, suppose that χ3 < −54τ2. Then a discriminant calculation shows that ϑ(z; χ, τ) has
distinct real critical points (two if τ = 0 and three more generally). One can show that in this
situation, (i) there are two critical points z = z± having opposite signs: z− < 0 < z+ such that
the third real critical point lies outside of the interval [z−, z+] and (ii) there is a zero level curve
Re(iϑ(z; χ, τ)) = 0 in the upper half-plane connecting the critical points z−, z+. Taking Γ to be the
union of the latter curve with its Schwarz reflection we therefore have the desired strict inequality
−1 < Re(iϑ(z; χ, τ)) < 1 holding uniformly for z ∈ Γ. See the first pane of Figure 6.

When χ increases through the value −(54τ2)
1
3 and τ ̸= 0, the third real critical point coalesces

with either z− or z+ (if τ = 0 instead z− and z+ coalesce at z = 0) and the double real critical
point bifurcates into a complex-conjugate pair denoted ξ = ξ(χ, τ), ξ∗ with Im(ξ) > 0. Because
the double real critical point for χ = −(54τ2)

1
3 lies on the set Re(iϑ(z; χ, τ)) = 0 ∈ (−1, 1), there

is a neighborhood of (−(54τ2)
1
3 , τ) in R2 on which it is still possible to place Γ surrounding the

origin within the region on which −1 < Re(iϑ(z; χ, τ)) < 1 holds, although it is generally no
longer possible to choose Γ to be a zero level curve of Re(iϑ(z; χ, τ)). Indeed, if χ > −(54τ2)

1
3 ,

the branch of the latter curve emanating into the upper half-plane from the remaining real root no
longer returns to the real line. See the second pane of Figure 6.

FIGURE 6. The region −1 < Re(iϑ(z; χ, τ)) < 1 (shaded) for τ = 1. The critical
points of ϑ(z; χ, τ) are marked with black dots. The red dot marks the singularity
of ϑ(z; χ, τ) at z = 0. From left to right, first pane: χ < −(54τ2)

1
3 , second pane

−(54τ2)
1
3 < χ < χc(τ), third pane: χ = χc(τ), and fourth pane: χ > χc(τ).

However, given τ ∈ R, there is a maximum value of χ denoted χc(τ) with χc(τ) > −(54τ2)
1
3

such that if χ > χc(τ), the region −1 < Re(iϑ(z; χ, τ)) < 1 no longer contains a Jordan curve
Γ surrounding the origin. See the third and fourth panes of Figure 6. The transition occurs be-
cause a critical point of ϑ(z; χ, τ) moves onto one of the two level curves Re(iϑ(z; χ, τ)) = ±1,
changing the topology of the indicated region in the z-plane so that it no longer contains a suit-
able contour Γ. In fact, since ϑ(z; χ, τ)∗ = ϑ(z∗; χ, τ), the two conditions Re(iϑ(ξ; χ, τ)) = −1 and
Re(iϑ(ξ∗; χ, τ)) = 1 occur simultaneously for χ = χc(τ). These two equivalent conditions can be
written in integral form as

(2.7) Im
(∫ ξ

ξ∗
ϑ′(z; χ, τ) dz

)
= 2.
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Using ϑ′(ξ; χ, τ) = 0, it is easy to see that for each fixed τ ∈ R,

(2.8)
∂

∂χ
Im
(∫ ξ

ξ∗
ϑ′(z; χ, τ) dz

)
= Im

(∫ ξ

ξ∗

∂ϑ′

∂χ
(z; χ, τ) dz

)
= Im

(∫ ξ

ξ∗
dz
)
= 2Im(ξ) > 0.

The left-hand side of (2.7) can be written as k(χ, τ) := Im(ϑ(ξ; χ, τ)− ϑ(ξ∗; χ, τ)) = −i(ϑ(ξ; χ, τ)−
ϑ(ξ∗; χ, τ)). Of course, when χ = −(54τ2)1/3, we have k(χ, τ) = 0 < 2 since ξ = ξ∗. For each fixed
τ ∈ R, it is easy to calculate the asymptotic behavior of the complex critical point ξ as χ → +∞;
namely ξ = i

√
2χ−1 + O(χ−3/2). Therefore k(χ, τ) = 4

√
2χ + O(χ−1/2) > 2 as χ → +∞. Since

χ 7→ k(χ, τ) is strictly increasing, it follows that there is a unique value χ = χc(τ) > −(54τ2)1/3

consistent with (2.7).
The function τ 7→ χc(τ) is differentiable. Indeed, implicit differentiation of (2.7) for χ = χc(τ)

with respect to τ gives

(2.9) χ′
c(τ) = −

∫ ξ

ξ∗
ϑ′

τ(z; χ, τ) dz∫ ξ

ξ∗
ϑ′

χ(z; χ, τ) dz
= −

∫ ξ

ξ∗
2z dz∫ ξ

ξ∗
dz

= − ξ2 − ξ∗2

ξ − ξ∗
= −(ξ + ξ∗) = −2Re(ξ).

When τ = 0 and χ > 0, the complex critical point is explicit: ξ(χ, 0) = i
√

2χ−1. Using
ϑ(z; χ, 0) = χz − 2z−1 shows that for χ > 0, ϑ(ξ(χ, 0); χ, 0) = i

√
8χ. Therefore, putting τ = 0

in (2.7) gives
√

8χ = 1, that is, χc(0) = 1
8 . It is easy to show using ϑ(z; χ,−τ) = −ϑ(−z; χ, τ)

that χc(⋄) is an even function and therefore also χ′
c(0) = 0. On the other hand, the condition

ϑ′(ξ; χ, τ) = 0 is equivalent to the cubic equation 2τξ3 + χξ2 + 2 = 0. Taking the imaginary part
shows that χ′

c(τ) = −2 Re(ξ) cannot vanish if τ ̸= 0 and Im(ξ) > 0. For τ ̸= 0 we can determine
the well-defined sign of the continuous function τ 7→ χ′

c(τ) by considering the limits τ → ±∞.
The relevant dominant balance in the critical point equation leads to 2τξ3 + 2 ≈ 0 which has
two complex roots satisfying sgn(Re(ξ)) = sgn(τ). Therefore also sgn(χ′

c(τ)) = −sgn(τ) for all
τ ̸= 0. It follows that for all τ ̸= 0 we have the strict inequality −(54τ2)1/3 < χc(τ) <

1
8 .

In fact, it is possible to express χc(τ) in algebraic form as follows. The condition ϑ(ξ; χ, τ) −
ϑ(ξ∗; χ, τ) = 2i can be written explicitly in terms of ξ = u + iv as

(2.10) v ·
(

χ + 2τu +
2

u2 + v2

)
= 1.

Likewise the statement that ϑ′(u + iv; χ, τ) = 0 can be split into its real part

(2.11) χ(u2 − v2) + 2τ(u3 − 3uv2) + 2 = 0

and its imaginary part (cancelling v ̸= 0):

(2.12) 2χu + 6τu2 − 2τv2 = 0.

From (2.12) we may explicitly eliminate u2 in favor of u:

(2.13) u2 =
1

3τ
(τv2 − χu).
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This formula allows one to systematically reduce higher powers of u to linear terms. Indeed,
substituting two consecutive times into (2.11) results in a linear equation for u that is solved by

(2.14) u =
18τ − 8χτv2

χ2 + 48τ2v2 .

Substituting this expression for u into (2.10) and (2.12) and finding common denominators results
in a 9th degree and 6th degree polynomial equation in v respectively. The resultant between these
two polynomials is the condition on (χ, τ) that they are simultaneously solvable; this resultant has
factors τ37 ̸= 0, (108τ2 + χ3)12 which vanishes for χ = −(108τ2)

1
3 ≤ −(54τ2)

1
3 , and finally F(χ, τ)

given by (1.12) in Section 1. It is straightforward to check by explicit calculation that F( 1
8 , 0) = 0,

while Fχ(
1
8 , 0) ̸= 0, so locally the implicit function theorem applies to yield χ = χc(τ). From this

representation it is easy to see that for large τ, χc(τ) ∼ −(54τ2)
1
3 , even though the strict inequality

χc(τ) > −(54τ2)
1
3 holds for all τ ∈ R. The curves χ = χc(τ) and χ = −(54τ2)

1
3 are plotted in

Figure 7.

FIGURE 7. Plots showing the curve χ = χc(τ) (dark blue) and the curve χ =

−(54τ2)
1
3 (gray), to the left of which z 7→ ϑ(z; χ, τ) has real critical points, at differ-

ent scales.

The coordinates (χ, τ) of the point on the graph χ = χc(τ) can be expressed in terms of the
corresponding critical point ξ = u + iv with the use of (2.11)–(2.12):

(2.15) χ =
2v2 − 6u2

(u2 + v2)2 and τ =
2u

(u2 + v2)2 .

Finally, when χ = χc(τ) and τ ̸= 0, there is a third real critical point of z 7→ ϑ(z; χ, τ) that can be
written in the form z = −χ/(2τ) + τλ/2, so since the product of the critical points is −τ−1 we
obtain a parametrization of λ in the form

(2.16) λ =
1
τ2

(
χ − 2

|ξ|2

)
= −2(u2 + v2)2

where we have used (2.15).
Now we give the proof of Theorem 1.4 in the case χ < χc(τ). Under this condition, a Jordan

curve Γ exists enclosing the origin on which −1 < Re(iϑ(z; χ, τ)) < 1 holds and hence Riemann-
Hilbert Problem 3 is of exponentially small-norm type in the limit M → +∞, locally uniformly
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with respect to (χ, τ). The statement in Theorem 1.4 that MΨ(M2χ, M3τ; G(a, b)) is uniformly
exponentially small as M → +∞ on compact subsets of χ < χc(τ) then follows from (2.6).

2.2. The spectral curve. When χ > χc(τ), to control the exponential factors on the off-diagonal
in the jump matrix in (2.4) we use the technique of multiplying S(z; χ, τ, M) on the right by a
diagonal matrix factor eiMg(z)σ3 where g(z) = g(z; χ, τ) = g(z∗; χ, τ)∗ is to be analytic except for
certain arcs of Γ along which either g+(z)− g−(z) or g+(z) + g−(z) + 2ϑ(z) is constant, and we
require g(z) → 0 as z → ∞. For the method to be effective, g(z) cannot vanish identically. Setting

(2.17) h(z) = h(z; χ, τ) := g(z; χ, τ) + ϑ(z; χ, τ),

we then see that h′(z)2 is analytic except at z = 0, and it has the asymptotic behavior

(2.18) h′(z)2 = 4z−4 + O(z−2), z → 0, and

(2.19) h′(z)2 = 4τ2z2 + 4τχz + χ2 + O(τz−1) + O(χz−2) + O(z−4), z → ∞,

in which the error terms cannot be made more precise without further knowledge of g′(z). There-
fore, by Liouville’s theorem

(2.20) h′(z)2 = z−4P(z), P(z) := 4τ2z6 + 4τχz5 + χ2z4 + C3z3 + C2z2 + 4

where C2 and C3 are real coefficients independent of z, and where C3 = 0 when τ = 0. The relation
y2 = z−4P(z) is said to define the spectral curve for the problem.

Note that g(z) vanishes identically if and only if P(z) = (2τz3 + χz2 + 2)2 is a perfect square.
Therefore we are only interested in the case that some of the roots of P(z) are simple. Also in the
special case that τ = 0, P is quartic instead of sextic: P(z) = χ2z4 + C2z2 + 4.

2.3. Integral condition. In fact, for χ > χc(τ), we will assume that P(z) has four simple roots
forming a complex quartet and denoted z = α, β, α∗, β∗ with α ̸= β and Im(α) > 0 and Im(β) > 0,
and that if τ ̸= 0 the remaining two roots are repeated and real, say z = γ/(2τ). In the latter case
we also require that C3 and C2 are related so that the discriminant of P(z) vanishes. So, whether
or not τ = 0 it remains to determine C2 ∈ R as a function of (χ, τ). To this end, we impose the
integral condition

(2.21) Im
(∫ α

α∗
h′(z) dz

)
= 2,

which is the correct analogue in this setting of (2.7). We note that since h(z; χ, τ) = g(z; χ, τ) +

ϑ(z; χ, τ) and g is analytic at z = 0, ∞ with g(z) → 0 as z → ∞ it follows immediately that

(2.22) Res
z=0

h′(z; χ, τ) = Res
z=∞

h′(z; χ, τ) = 0.

This along with the Schwarz symmetry h′(z∗; χ, τ) = h′(z; χ, τ)∗ implies that if we take a contour
of integration from z = α to z = β that avoids the branch cuts of h′(z; χ, τ) except at the endpoints,
then without further conditions,

(2.23) Im
(∫ β

α
h′(z) dz

)
= 0.
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Consequently, it makes no difference if (α, α∗) are replaced with (β, β∗) in (2.21).
If τ ̸= 0, we assume that P(z) as given by (2.20) has a double real root that we write in the

form z = γ/(2τ) for some γ ∈ R to be determined, and no further real roots. We then match
P(z) = (2τz − γ)2(z4 − S1z3 + S2z2 − S3z + S4) with the form given in (2.20) to equate the sym-
metric homogeneous polynomials Sp of degree p in the four generically simple complex roots
z = α, β, α∗, β∗ to explicit expressions in (χ, τ, γ):

S1 := α + α∗ + β + β∗ = −χ + γ

τ

S2 := αα∗ + αβ + αβ∗ + α∗β + α∗β∗ + ββ∗ =
(χ + γ)(χ + 3γ)

4τ2

S3 := αα∗β + αα∗β∗ + αββ∗ + α∗ββ∗ = −16τ

γ3

S4 := αα∗ββ∗ =
4

γ2 .

(2.24)

To match the asymptotic that h′(z) = 2τz + O(1) as z → ∞ we write

(2.25) h′(z) =
2τz − γ

z2 R(z), R(z)2 = z4 − S1z3 + S2z2 − S3z + S4, Sp = Sp(γ, χ, τ),

(cf., (1.13)) where R(z) is analytic except for a branch cut connecting z = α and z = β in the upper
half-plane and its reflection in the real axis, and where R(z) = z2 + O(z) as z → ∞.

At this point, to be able to include the τ = 0 case in the same framework it is convenient to
parametrize γ by a new parameter λ so that γ = −χ + τ2λ. Then the coefficients of R(z)2 become

(2.26) S1 = −τλ, S2 =
3
4

τ2λ2 − 1
2

χλ, S3 = − 16τ

(τ2λ − χ)3 , S4 =
4

(τ2λ − χ)2 .

Indeed, taking the limit τ → 0 for fixed χ, λ, and z ̸= 0, R(z)2 → z4 + χ−2C2z2 + 4χ−2 and
h′(z)2 → χ2(z4 + χ−2C2z2 + 4χ−2)z−4 where C2 = − 1

2 χ3λ.

Lemma 2.1. Let τ ∈ R and suppose that χ ≥ χc(τ). Then γ = −χ + τ2λ ̸= 0.

Proof. If τ ̸= 0, expanding out (2τz − γ)2R(z)2 and comparing with P(z) in the form (2.20) shows
that for all finite values of C2, C3 one has γ ̸= 0. If τ = 0, then γ = −χ < −χc(0) = − 1

8 < 0. □

Using h′(z∗) = h′(z)∗, the integral condition (2.21) then can be written as f (λ; χ, τ) = 0, where

(2.27) f (λ; χ, τ) := −i
(∫ α

α∗
h′(z) dz − 2i

)
= −i

(∫ α

α∗

2τz + χ − τ2λ

z2 R(z) dz − 2i
)

.

We think of this as an equation to be solved for λ given (χ, τ) ∈ R2 with τ ̸= 0 and χ > χc(τ). A
computation using (2.24)–(2.25) shows that

(2.28)
∂R
∂λ

(z) =
2τ(τ2λ − χ)4z3 + (τ2λ − χ)4(3τ2λ − χ)z2 − 96τ3z − 16τ2(τ2λ − χ)

4(τ2λ − χ)4R(z)
.

From this it follows that
(2.29)
∂h′

∂λ
(z) = − Q(λ; χ, τ)

4(τ2λ − χ)4R(z)
, Q(λ; χ, τ) := 6(τ2λ− χ)6 + 6χ(τ2λ− χ)5 + χ2(τ2λ− χ)4 + 192τ4.
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Therefore, using the fact that h′(α) = h′(α∗) = 0,

(2.30)
∂ f
∂λ

(λ; χ, τ) = i
Q(λ; χ, τ)

4(τ2λ − χ)4

∫ α

α∗

dz
R(z)

.

The integral factor is a complete elliptic integral of the first kind. It cannot vanish, and by Schwarz
symmetry of R(z), it is purely imaginary. By artificially deforming the branch points α, α∗, β, β∗ to
a configuration symmetric about the imaginary axis (so β = −α∗), one can show that the integral
is purely positive imaginary. Consequently, fλ(λ; χ, τ) = 0 if and only if Q(λ; χ, τ) = 0, and
sgn( fλ(λ; χ, τ)) = −sgn(Q(λ; χ, τ)).

To determine how the configuration of roots of R(z)2 depends on λ and (χ, τ) with χ > χc(τ),
we now analyze the discriminant locus, i.e., the points in the (χ, λ)-plane for fixed τ at which the
discriminant D(χ, τ, λ) of R(z)2 vanishes. The discriminant is given explicitly by

(2.31) D(χ, τ, λ) =
D+

2 (χ, τ, λ)2D−
2 (χ, τ, λ)2D1(χ, τ, λ)

2(χ − τ2λ)12

in which

D±
2 (χ, τ, λ) := (χ − τ2λ)2λ ± 8

D1(χ, τ, λ) := 27(τ2λ − χ)5τ2λ + 9χ2(τ2λ − χ)4 + χ3(τ2λ − χ)3 − 864τ4.
(2.32)

Neither of the double factors D±
2 (χ, τ, λ) nor the simple factor D1(χ, τ, λ) can vanish for λ = τ−2χ.

(Neither of the double factors can vanish for λ = 0 either.) Hence given τ ̸= 0, equating the three
factors to zero gives a system of curves in the (χ, λ)-plane, none of which can intersect the line
λ = τ−2χ. In the limit χ → +∞, it is straightforward to determine all of the real solutions
λ = λk(χ, τ) of D = 0 at fixed τ ̸= 0; in order of increasing λ (i.e., λj(χ, τ) < λk(χ, τ)) these are:

• λ1 = −8χ−2 + 128τ2χ−5 + O(χ−8), a root of D+
2 (χ, τ, λ);

• λ2 = 8χ−2 + 128τ2χ−5 + O(χ−8), a root of D−
2 (χ, τ, λ);

• λ3 = 2
3 χτ−2 − (864τ−2)

1
3 χ−1 + O(χ−3), a root of D1(χ, τ, λ);

• λ4 = χτ−2 −
√

8|τ|−1χ− 1
2 + O(χ−2), a root of D−

2 (χ, τ, λ);
• λ5 = χτ−2 + (864τ−2)

1
3 χ−1 + O(χ−3), a root of D1(χ, τ, λ);

• λ6 = χτ−2 +
√

8|τ|−1χ− 1
2 + O(χ−2), a root of D−

2 (χ, τ, λ).

The other two roots of the double factor D+
2 (χ, τ, λ) and the remaining four roots of the simple

factor D1(χ, τ, λ) are non-real for χ > 0 sufficiently large. Now considering finite χ, we note:

• The discriminant of D+
2 (χ, τ, λ) with respect to λ is −32τ6(54τ2 + χ3). This is strictly

negative for τ ̸= 0 and χ > χc(τ), and hence λ1(χ, τ) remains the only real root of this
factor on the whole interval χ > χc(τ).

• The discriminant of D−
2 (χ, τ, λ) with respect to λ is −32τ6(54τ2 − χ3). This will change

sign from positive to negative as χ decreases through the value

(2.33) χ = χ0(τ) := (54τ2)
1
3 > 0,
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which lies in the interval χ > χc(τ) provided |τ| is sufficiently large2. In this case, as χ

decreases from +∞ through the value χ0(τ) > χc(τ), two of the three real roots λ2(χ, τ),
λ4(χ, τ), and λ6(χ, τ) will coalesce and disappear. Since the graphs of λ = λ4(χ, τ) and
λ = λ6(χ, τ) lie on opposite sides of the line λ = τ−2χ for large χ > 0 and neither can
cross this line, the two roots λ2(χ, τ) and λ4(χ, τ) lying below this line are the ones that
coalesce and disappear with the common value of λ = 18χ0(τ)−2.

• The discriminant of D1(χ, τ, λ) with respect to λ is proportional by a large positive integer
to τ76(1492992τ4 + χ6). This is strictly positive for τ ̸= 0 and χ > χc(τ), and hence
λ3(χ, τ) < λ5(χ, τ) remain the only real roots of this factor for all χ > χc(τ).

Next we discuss the possibility of intersections of branches λ = λk(χ, τ) belonging to different
factors in the discriminant:

• Obviously, the double factors D±
2 (χ, τ, λ) can have no roots λ in common.

• The resultant of the double factor D+
2 (χ, τ, λ) and the simple factor D1(χ, τ, λ) with respect

to λ is 4096τ30(54τ2 + χ3)3. Since this is nonzero for τ ̸= 0 and χ ≥ χc(τ), λ1(χ, τ) <

λ3(χ, τ) holds on the whole interval χ ≥ χc(τ).
• The resultant of the double factor D−

2 (χ, τ, λ) and the simple factor D1(χ, τ, λ) with respect
to λ is 4096τ30(54τ2 − χ3)3. If τ2 > τ̂2, as χ decreases from +∞, this will vanish at exactly
the same value χ = χ0(τ) > χc(τ) at which point the real roots λ2(χ, τ) and λ4(χ, τ) of
D−

2 (χ, τ, λ) coalesce and disappear. This is consistent with the fact that between each pair
of consecutive real roots of D−

2 (χ, τ, λ) for χ > 0 sufficiently large there lies a real root
of D1(χ, τ, λ). Moreover, when χ = χ0(τ), it is easy to check that λ2(χ, τ) = λ3(χ, τ) =

λ4(χ, τ) = 18χ−2 and λ5(χ, τ) = λ6(χ, τ) = 72χ−2. Expanding D−
2 (χ, τ, λ) and D1(χ, τ, λ)

about λ = 72χ0(τ)−2 and χ = χ0(τ) shows that λ5(χ, τ) < λ6(χ, τ) for χ ̸= χ0(τ).

Next, we determine the components of the complement of the discriminant locus for which R(z)2

has two distinct complex-conjugate pairs of non-real roots. Based on the above analysis, the com-
plement of the discriminant locus and the singular line λ = τ−2χ consists of eight pairwise disjoint
components if τ2 ≤ τ̂2, and a ninth component (denoted R<

56 below) appears for τ2 > τ̂2:

• The region R− is defined by the inequality λ < λ1(χ, τ) for χ > χc(τ).
• The region R12 is defined by the inequalities λ1(χ, τ) < λ < λ2(χ, τ) for χ > χc(τ) if

τ2 ≤ τ̂2. If τ2 > τ̂2, then R12 is defined by λ1(χ, τ) < λ < λ2(χ, τ) for χ ≥ χ0(τ) and by
λ1(χ, τ) < λ < λ3(χ, τ) for χc(τ) < χ < χ0(τ).

• The region R23 is defined by the inequalities λ2(χ, τ) < λ < λ3(χ, τ) for χ > χc(τ) if
τ2 ≤ τ̂2. If τ2 > τ̂2, then R23 is defined by λ2(χ, τ) < λ < λ3(χ, τ) for χ > χ0(τ).

• The region R34 is defined by the inequalities λ3(χ, τ) < λ < λ4(χ, τ) for χ > χc(τ) if
τ2 ≤ τ̂2. If τ2 > τ̂2, then R34 is defined by λ3(χ, τ) < λ < λ4(χ, τ) for χ > χ0(τ).

• The region R40 is defined by the inequalities λ4(χ, τ) < λ < τ−2χ for χ > χc(τ) if τ2 ≤ τ̂2.
If τ2 > τ̂2, then R40 is defined by λ4(χ, τ) < λ < τ−2χ for χ ≥ χ0(τ) and by λ3(χ, τ) <

λ < τ−2χ for χc(τ) < χ < χ0(τ).

2Computing the resultant of F(χ, τ) given by (1.12) (whose zero locus contains the curve χ = χc(τ)) and χ3 − 54τ2

with respect to χ gives a cubic polynomial in τ2 with a unique positive root that determines the threshold value of |τ|
beyond which (54τ2)

1
3 > χc(τ), namely |τ| = |τ̂| ≈ 0.00573703.
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• The region R05 is defined by the inequalities τ−2χ < λ < λ5(χ, τ) for χ > χc(τ) (regardless
of the sign of τ2 − τ̂2).

• The region R>
56 is defined by the inequalities λ5(χ, τ) < λ < λ6(χ, τ) for χ > χc(τ) if

τ2 ≤ τ̂2. If τ2 > τ̂2, then R+
56 is defined by λ5(χ, τ) < λ < λ6(χ, τ) for χ > χ0(τ).

• The region R<
56 is only defined for τ2 > τ̂2, and it is given by the inequalities λ5(χ, τ) <

λ < λ6(χ, τ) for χc(τ) < χ < χ0(τ).
• The region R+ is defined by the inequality λ > λ6(χ, τ) for χ > χc(τ).

See Figure 8. For all (χ, τ, λ) in any given region, R(z)2 is in exactly one of three distinct cases:

FIGURE 8. The locus Q(λ; χ, τ) = 0 (dashed green curve) and the discriminant
locus in the (χ, λ − τ−2χ)-plane for τ = 0.003 (left) and τ = 1 (right). Red curve:
the real root λ = λ1(χ, τ) of the double factor D+

2 (χ, τ, λ). Blue curves: roots
λ = λ2(χ, τ), λ = λ4(χ, τ), and λ = λ6(χ, τ) of the double factor D−

2 (χ, τ, λ). Black
curves: the real roots λ = λ3(χ, τ) and λ = λ5(χ, τ) of the simple factor D1(χ, τ, λ).
The vertical dotted magenta line is χ = χc(τ), the vertical dotted black line is
χ = χ0(τ), and the horizontal dotted lines are λ = 18χ0(τ)−2 and λ = 72χ0(τ)−2.
For χ > χc(τ), green shading indicates the regions (iii) where R(z)2 has distinct
complex roots, pink shading indicates the regions (i) where R(z)2 has all real simple
roots, and no shading indicates regions (ii) where R(z)2 has two real roots and a
complex-conjugate pair of roots.

(i) four simple real roots, (ii) two simple real roots and two simple non-real roots, or (iii) four
simple non-real roots. To determine the case for a given region it therefore suffices to do so
for any convenient point (χ, τ, λ) contained therein. Since all of the regions except for R<

56 con-
tain arbitrarily large χ > 0, for these regions it suffices to determine the root configuration for
any chosen λ asymptotically confined as χ → +∞ in the eight disjoint intervals λ < λ1(χ, τ),
λ1(χ, τ) < λ < λ2(χ, τ), λ2(χ, τ) < λ < λ3(χ, τ), λ3(χ, τ) < λ < λ4(χ, τ), λ4(χ, τ) < λ < τ−2χ,
τ−2χ < λ < λ5(χ, τ), λ5(χ, τ) < λ < λ6(χ, τ), and λ > λ6(χ, τ). To determine the root configura-
tion on R<

56 it suffices to consider χ = 0 which yields λ5(0, τ) = 32
1
6 |τ|− 4

3 and λ6(0, τ) = 64
1
6 |τ|− 4

3 ;
then we may set λ = 48

1
6 |τ|− 4

3 and verify that τ scales out of the root-finding problem for R(z)2.
For each region the root configuration is thusly determined by explicit calculations. The results
are:

• R(z)2 has four simple real roots if (χ, τ, λ) ∈ R23 ∪ R>
56.
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• R(z)2 has two simple real roots and two simple non-real roots if (χ, τ, λ) ∈ R34 ∪ R40 ∪ R05.
• R(z)2 has four simple non-real roots if (χ, τ, λ) ∈ R− ∪ R12 ∪ R<

56 ∪ R+.

Moreover, it can be shown that among all of the arcs making up the discriminant locus, those
for which there are no real roots of R(z)2 (i.e., a purely complex double root configuration) are
precisely λ = λ1(χ, τ) for χ > −χ0(τ) (a condition implied by χ > χc(τ)) and λ = λ6(χ, τ) for
χ < χ0(τ). In other words, these are the arcs of the locus that separate two regions on each of
which R(z)2 has four simple non-real roots. On all other arcs of the discriminant locus, R(z)2 has
at least one double real root.

In the case that τ = 0 and χ > χc(0) = 1
8 , it is clear that D1(χ, τ, λ) has no roots λ whatsoever,

while D+
2 (χ, τ, λ) = 0 has only the root λ1(χ, τ) = −8χ−2 and D−

2 (χ, τ, λ) = 0 has only the root
λ2(χ, τ) = 8χ−2. Therefore, only three regions survive: R−, R12, and R23, with the upper bound
on λ for R23 replaced by +∞.

Lemma 2.2. On the region R12 in the (χ, λ)-plane, the inequality Q(λ; χ, τ) > 0 holds.

Proof. Since Q(λ; χ, 0) = χ6 and for τ = 0, χ > χc(0) = 1
8 > 0 on R12, it suffices to fix τ ̸= 0

for the rest of the proof. By an asymptotic analysis of λ 7→ Q(λ; χ, τ) as χ → +∞ analogous
to that already conducted above for λ 7→ D±

2 (χ, τ, λ) and λ 7→ D1(χ, τ, λ), one can check that
Q(λ; χ, τ) = 0 has two real solutions λ = λ±

Q(χ, τ) with asymptotic behavior λ±
Q(χ, τ) = ( 1

2 ±
1
6

√
3)τ−2χ+O(χ−5) as χ → +∞ while the other four roots are non-real for χ > 0 sufficiently large.

Hence λ1(χ, τ) < λ2(χ, τ) < λ−
Q(χ, τ) < λ3(χ, τ) < λ+

Q(χ, τ) < λ4(χ, τ) < λ5(χ, τ) < λ6(χ, τ)

holds for sufficiently large χ > 0.
For τ ̸= 0, the discriminant of Q(λ; χ, τ) with respect to λ is proportional by a positive fac-

tor to the product −(54τ2 − χ3)(54τ2 + χ3)(1492992τ4 + χ6), which for χ > χc(τ) vanishes if
and only if χ = (54τ2)

1
3 . This occurs for no χ > χc(τ) if |τ| < |τ̂| and at exactly the value

χ = χ0(τ) ≥ χc(τ) otherwise (the dotted black vertical line in the right-hand pane of Figure 8).
However, Q(λ; χ0(τ), τ) = (χ0(τ)2λ − 18)2 p(λ; τ) where λ 7→ p(λ; τ) is a quartic polynomial
with discriminant proportional via a positive factor to χ0(τ)60 > 0. Hence there is one real
double root λ = λ0(τ) := 18χ0(τ)−2 and four simple roots (of p). These four roots are also
non-real because there are only two real roots for large χ > 0 and the discriminant of Q is
nonzero for χ > χ0(τ). Expanding Q(λ; χ, τ) = 0 about χ = χ0(τ) and λ = λ0(τ) shows
that χ − χ0(τ) ≈ 9

4 τ4(2τ2)−
1
3 (λ − λ0(τ))2, so that λ 7→ Q(λ; χ, τ) has exactly two real roots

λ = λ±
Q(χ, τ) for χ > χ0(τ), which coalesce and disappear as χ decreases through χ0(τ). Since

the discriminant is nonzero for χc(τ) < χ < χ0(τ), there are no real roots at all in this interval.
Next we show that the two roots λ−

Q(χ, τ) and λ+
Q(χ, τ) are confined to the regions R23 and R34

respectively. This holds for sufficiently large χ > 0 due to the inequalities λ2(χ, τ) < λ−
Q(χ, τ) <

λ3(χ, τ) < λ+
Q(χ, τ) < λ4(χ, τ). It suffices therefore to show that these inequalities persist as χ

decreases to χ0(τ) (if |τ| > |τ̂|) or to χc(τ) > χ0(τ) (if |τ| < |τ̂|). But λ2(χ, τ) and λ4(χ, τ) are
roots of λ 7→ D−

2 (χ, τ, λ) defined for χ > χ0(τ), and the resultant of Q(λ; χ, τ) with D−
2 (χ, τ, λ) as

polynomials in λ is 65536τ32(54τ2 − χ3)2 which is nonzero for χ > χ0(τ). Hence the inequalities
λ2(χ, τ) < λ−

Q(χ, τ) and λ+
Q(χ, τ) < λ4(χ, τ) both persist for χ > χ0(τ). Similarly, λ3(χ, τ) is

a root of λ 7→ D1(χ, τ, λ), and the resultant of Q(λ; χ, τ) with D1(χ, τ, λ) as polynomials in λ is
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191102976τ84(54τ2 − χ3)(54τ2 + χ3)(1492992τ4 + χ6)2 which again is nonzero for χ > χ0(τ) and
hence λ−

Q(χ, τ) < λ3(χ, τ) < λ+
Q(χ, τ) holds in the same interval. As the region R23 is defined by

λ2(χ, τ) < λ < λ3(χ, τ) and R34 is defined by λ3(χ, τ) < λ < λ4(χ, τ), the claim is proved. The
roots λ±

Q(χ, τ) are illustrated in the plots in Figure 8 with dashed green curves.
Since R− ∪ R12 ∪ {λ = λ1(χ, τ)} is disjoint from R23 and from R34, Q(λ; χ, τ) is of one sign

on the whole region of interest. To determine its sign, it suffices to let λ → −∞ for fixed (χ, τ)

yielding that Q(λ; χ, τ) > 0 holds on R12 in particular. □

Lemma 2.3. If (χ, τ, λ) are such that R(z)2 has any real repeated roots, then f (λ; χ, τ) = −2 ̸= 0.

Proof. If R(z)2 has a repeated real root, say α = α∗, the integral in (2.27) vanishes. □

Proposition 2.4. For each χ > χc(τ), there exists a unique solution λ = λ(χ, τ) of f (λ; χ, τ) = 0 that
is real analytic as a function of (χ, τ) and such that the graph of χ 7→ λ(χ, τ) lies in the region R12.

Proof. Given χ > χc(τ), the intersection of R12 with the fixed-χ vertical line in the plots shown in
Figure 8 is a λ-interval λ1(χ, τ) < λ < λmax(χ, τ), where λmax(χ, τ) = λ2(χ, τ) or (if |τ| > |τ̂|
and χc(τ) < χ < χ0(τ)) λmax(χ, τ) = λ3(χ, τ). When λ = λmax(χ, τ) there is a repeated real root
of R(z)2 implying via Lemma 2.3 that f (λ; χ, τ) = −2. On the other hand, when λ = λ1(χ, τ),
R(z)2 = (z − ξ)2(z − ξ∗)2 for some σ ∈ C+, implying that the polynomial P(z) in (2.20) is a
perfect square; therefore g(z) vanishes identically and hence h(z; χ, τ) = ϑ(z; χ, τ). This means
that f (λ1(χ, τ); χ, τ) = k(χ, τ)− 2, where k(χ, τ) is the left-hand side of (2.7). Since by definition of
χc(τ) we have k(χ, τ)− 2 = 0 for χ = χc(τ), according to (2.8) f (λ1(χ, τ); χ, τ) = k(χ, τ)− 2 > 0
holds because χ > χc(τ). Existence of a unique solution λ = λ(χ, τ) ∈ (λ1(χ, τ), λmax(χ, τ))

of f (λ; χ, τ) = 0 then follows from the intermediate value theorem, (2.30), and Lemma 2.2. Real
analyticity of χ 7→ λ(χ, τ) follows from the implicit function theorem and analyticity of f with
respect to χ > χc(τ) and τ. □

2.4. Construction of g(z). We now show how, given χ > χc(τ), branch cuts for h(z) can be chosen
so that Im(h(z)± i) has a sign chart that is suitable for subsequent steepest-descent analysis. Level
curves of Im(h(z)) are arcs of horizontal trajectories of the quadratic differential h′(z)2 dz2, i.e.,
curves with tangent dz satisfying at every point z the condition h′(z)2 dz2 > 0. Since h′(z) is
real-valued for z ∈ R, the real line (omitting the pole z = 0 and, if τ ̸= 0, the double zero
at z = γ/(2τ) = −χ/(2τ) + τλ/2) is one such trajectory. As trajectories cannot intersect, all
remaining trajectories are therefore confined to the open half-planes C±; by Schwarz symmetry
of h′(z) those in C− are obtained from those in C+ by reflection through the real line. On the
Riemann sphere, the quadratic differential h′(z)2 dz2 has just two poles (z = 0, ∞), so applying
Jenkins’ three-pole theorem [19, Theorem 3.6] shows that there can be no recurrent trajectories
and therefore also no divergent trajectories (see [24, §10.2 and 11.1]). It follows that each of the
three trajectories emanating from any simple zero of h′(z)2 tends in the other direction toward a
pole or zero of h′(z)2. For all χ > χc(τ) we have exactly two simple zeros z = α, β in the open
upper half-plane C+, and if τ ̸= 0 no trajectory from either of them can terminate in the other
direction at the real double zero z = γ/(2τ) because this is forbidden by the integral condition
(2.21). Teichmüller’s Lemma [24, Theorem 14.1] can then be used to show that exactly one of the
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trajectories from z = α (resp., z = β) tends to z = 0, exactly one other tends to z = ∞, and the
third tends to the other zero in C+, z = β (resp., z = α).

Given this trajectory structure, we now construct the function g(z) so that Im(h(z) ± i) has
the sign chart necessary to admit steepest-descent analysis. Indeed, let Σg denote the Schwarz-
symmetric contour consisting of the trajectory h′(z)2 dz2 > 0 joining the complex roots z = α, β

in the upper half-plane, its Schwarz reflection in the real line, and a Schwarz-symmetric arc con-
necting z = β, β∗ that lies in the sector at z = β bounded by the trajectories emanating from this
point and tending to z = 0, ∞ (we assume that Re(α) ≤ Re(β), and if the real parts are equal,
Im(α) > Im(β)). In particular, the latter arc of Σg crosses the real line at a positive value. Taking
the branch cuts of h′(z) to be the arcs of Σg joining α, β and joining α∗, β∗ and accounting for the
fact that g(∞) = 0, g(z) is defined by integration of g′(z) = h′(z)− ϑ′(z):

(2.34) g(z) =
∫ z

∞

[
h′(Z)− ϑ′(Z)

]
dZ, z ∈ C \ Σg,

where the path of integration is arbitrary in C \ Σg because all singularities are removable. It
follows that g(z) and h(z) = ϑ(z) + g(z) are both real-valued for z ∈ R and that g(z∗) = g(z)∗

and h(z∗) = h(z)∗. On the arc of Σg connecting z = α, β, it follows from (2.21) and h′+(z) +
h′−(z) = 0 that h+(z) + h−(z) is independent of z and that Im(h+(z) + h−(z)) = 2. We may write
h+(z) + h−(z) = 2i + ϕ, where ϕ ∈ R is independent of z. Likewise, since h′(z) is analytic on the
arc of Σg joining β, β∗, on this arc (taken with downwards orientation) the difference of boundary
values is independent of z and real: h+(z)− h−(z) = ∆ ∈ R (as in (1.15)); meanwhile given the
placement of this arc relative to the critical trajectories, Schwarz symmetry of h and (2.21) imply
that Im(h+(z) + h−(z)) ∈ (−2, 2). This in turn implies that Im(h(z)) > 1 holds on either side of
the arc of Σg joining z = α, β, and that Im(h(z)) < 1 holds in the sector at z = α opposite this arc.
ee Figure 9 for these arcs and the regions where Im(h(z)) < 1 and Im(h(z)) > −1.

We denote the three arcs of Σg as Γα→β, Γβ→β∗ , and Γβ∗→α∗ with the subscript indicating the
endpoints and orientation. Including an additional oriented Schwarz-symmetric arc Γα∗→α lying
in the sector bounded by the trajectories emanating from α tending to z = 0, ∞ (crossing the real
line at a negative value) we obtain a closed contour Γ := Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗ ∪ Γα∗→α with the
origin in its interior and clockwise orientation. Note that Im(h(z)) ∈ (−1, 1) holds for z ∈ Γα∗→α.

2.5. Additional properties of the spectral curve for χ > χc(τ).

2.5.1. Modulation equations. The four roots z = α, β, α∗, β∗ of R(z)2 are functions of (χ, τ) on the
domain χ > χc(τ). Here we derive a quasilinear system of Whitham modulation equations for
which these functions are Riemann invariants. The starting point is the trivial (Clairaut) identity

(2.35)
∂

∂τ

∂h
∂χ

(z; χ, τ) +
∂

∂χ

(
− ∂h

∂τ
(z; χ, τ)

)
= 0, z ∈ C \ Σg.

The left-hand side of this equation is an analogue in this setting of the canonical differential Ω
in the modulation theory of the Korteweg-de Vries equation as explained by Flaschka, Forest,
and McLaughlin [16]. We first express the “inner” partial derivatives of h explicitly in terms of
α, β, α∗, β∗, and z by differentiating their Riemann-Hilbert jump conditions and solving the dif-
ferentiated problems. Using (1.11) and (2.17) shows that the partial derivatives hχ(z; χ, τ) and
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FIGURE 9. Left-pane: the region where Im(h(z)) < 1 and the arc of Σg connecting
the points z = α, β. The factor e−2iM(h(z)−i) decays exponentially as M → +∞ for z
in the shaded region. Center-pane: the region where Im(h(z)) > −1 and the arc of
Σg connecting the points z = β∗, α∗. The factor e2iM(h(z)+i) decays exponentially as
M → +∞ for z in the shaded region. Right-pane: the region where the composite
inequality −1 < Im(h(z)) < 1 holds, and the arcs of Σg connecting z = α, β and
z = β∗, α∗. Both of the factors e−2iM(h(z)−i) and e2iM(h(z)+i) decay exponentially as
M → +∞ for z in the shaded region.

hτ(z; χ, τ) are both analytic functions for z ∈ C \Σg, and taking into account further that g(∞) = 0
holds for all (χ, τ) in question shows that hχ(z; χ, τ) = z + O(z−1) while hτ(z; χ, τ) = z2 +

O(z−1) as z → ∞. Differentiation of the jump conditions for h(z; χ, τ) shows that hχ+(z; χ, τ) +

hχ−(z; χ, τ) = ϕχ(χ, τ) and hτ+(z; χ, τ) + hτ−(z; χ, τ) = ϕτ(χ, τ) both hold for z ∈ Γα→β ∪ Γβ∗→α∗ .
Likewise, hχ+(z; χ, τ) − hχ−(z; χ, τ) = ∆χ(χ, τ) and hτ+(z; χ, τ) − hτ−(z; χ, τ) = ∆τ(χ, τ) both
hold for z ∈ Γβ→β∗ . It follows from these conditions that hχ(z; χ, τ) and hτ(z; χ, τ) necessarily
have the form

(2.36)
∂h
∂χ

(z; χ, τ) = R(z)

[
ϕχ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

dw
R+(w)(w − z)

+
∆χ(χ, τ)

2πi

∫
Γβ→β∗

dw
R(w)(w − z)

]
and
(2.37)

∂h
∂τ

(z; χ, τ) = R(z)

[
1 +

ϕτ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

dw
R+(w)(w − z)

+
∆τ(χ, τ)

2πi

∫
Γβ→β∗

dw
R(w)(w − z)

]
.

But since R(z)−1 = z−2 + r3z−3 + r4z−4 + O(z−5) as z → ∞, where

r3 :=
1
2
(α + β + α∗ + β∗),

r4 :=
1
8
(
3(α + β + α∗ + β∗)2 − 4(αα∗ + αβ + α∗β + αβ∗ + α∗β∗ + ββ∗)

)
,

(2.38)
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upon dividing (2.36) by R(z) and using hχ(z; χ, τ) = z + O(z−1) as z → ∞ we see that

ϕχ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

dw
R+(w)

+
∆χ(χ, τ)

2πi

∫
Γβ→β∗

dw
R(w)

= −1

ϕχ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

w dw
R+(w)

+
∆χ(χ, τ)

2πi

∫
Γβ→β∗

w dw
R(w)

= −r3,
(2.39)

and similarly using hτ(z; χ, τ) = z2 + O(z−1) as z → ∞ in (2.37) gives

ϕτ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

dw
R+(w)

+
∆τ(χ, τ)

2πi

∫
Γβ→β∗

dw
R(w)

= −r3

ϕτ(χ, τ)

2πi

∫
Γα→β∪Γβ∗→α∗

w dw
R+(w)

+
∆τ(χ, τ)

2πi

∫
Γβ→β∗

w dw
R(w)

= −r4.
(2.40)

Now a contour deformation shows that

(2.41)
∫

Γα→β∪Γβ∗→α∗

dw
R+(w)

= 0 and
∫

Γα→β∪Γβ∗→α∗

w dw
R+(w)

= −iπ.

Therefore, defining

(2.42) Ip :=
1

2πi

∫
Γβ→β∗

wp dw
R(w)

, p ∈ Z≥0,

and noting that I0 ̸= 0 as a complete elliptic integral of the first kind, we may solve explicitly for
ϕχ(χ, τ), ∆χ(χ, τ), ϕτ(χ, τ), and ∆τ(χ, τ):

(2.43) ∆χ(χ, τ) = − 1
I0

and ϕχ(χ, τ) = 2r3 − 2
I1

I0

and

(2.44) ∆τ(χ, τ) = − r3

I0
and ϕτ(χ, τ) = 2r4 − 2

r3 I1

I0
.

Using these in (2.36)–(2.37) explicitly presents the “inner” partial derivatives of h as functions of z
depending parametrically on χ, τ only via the four points z = α, β, α∗, β∗.

The expressions (2.36)–(2.37) can be further simplified by invoking another contour integration
argument to show that

(2.45)
∫

Γα→β∪Γβ∗→α∗

dw
R+(w)(w − z)

=
iπ

R(z)
, z ∈ C \ Σg.

We thus define another branch of the square root by setting

(2.46) R̃(z) :=

−R(z), z ∈ int(Γ),

R(z), z ∈ ext(Γ),
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and we see that if C is a clockwise-oriented loop surrounding the branch cut Γβ→β∗ of R̃(z) but not
enclosing its other branch cut Γα∗→α,

(2.47)
∫

Γβ→β∗

dw
R(w)(w − z)

=


1
2

∮
C

dw
R̃(w)(w − z)

, z ∈ ext(C)

iπ
R̃(z)

+
1
2

∮
C

dw
R̃(w)(w − z)

, z ∈ int(C) \ Γβ→β∗ .

Therefore, (2.36)–(2.37) become
(2.48)

∂h
∂χ

(z; χ, τ) =


1
2

ϕχ(χ, τ) +
∆χ(χ, τ)

4πi
R(z)

∮
C

dw
R̃(w)(w − z)

, for z near α or α∗

1
2
(ϕχ(χ, τ)± ∆χ(χ, τ)) +

∆χ(χ, τ)

4πi
R(z)

∮
C

dw
R̃(w)(w − z)

, for z near β or β∗,

(2.49)
∂h
∂τ

(z; χ, τ)

=


R(z) +

1
2

ϕτ(χ, τ) +
∆τ(χ, τ)

4πi
R(z)

∮
C

dw
R̃(w)(w − z)

, for z near α or α∗

R(z) +
1
2
(ϕτ(χ, τ)± ∆τ(χ, τ)) +

∆τ(χ, τ)

4πi
R(z)

∮
C

dw
R̃(w)(w − z)

, for z near β or β∗,

where the ± sign stands for the fraction R(z)/R̃(z). Also, Ip defined by (2.42) can be rewritten as

(2.50) Ip =
1

4πi

∮
C

wp dw
R̃(w)

, p ∈ Z≥0.

Next, we differentiate hχ and hτ with respect to τ and χ respectively, thinking of z near z1 :=
α, z2 := β, z3 := α∗, or z4 := β∗. The most singular terms in any of these limits arise from
differentiation of R(z) via its branch points, since

(2.51)
∂R

∂χ, τ
(z) = −1

2
R(z)

4

∑
i=1

1
z − zi

∂zi

∂χ, τ
.

Hence

(2.52)
∂

∂τ

(
∂h
∂χ

(z; χ, τ)

)
= −∆χ(χ, τ)

8πi
R(z)

[
4

∑
i=1

1
z − zi

∂zi

∂τ

] ∮
C

dw
R̃(w)(w − zℓ)

+ O(1), z → zℓ

and
(2.53)

∂

∂χ

(
− ∂h

∂τ
(z; χ, τ)

)
= R(z)

[
4

∑
i=1

1
z − zi

∂zi

∂χ

](
1
2
+

∆τ(χ, τ)

8πi

∮
C

dw
R̃(w)(w − zℓ)

)
+ O(1), z → zℓ.

Therefore, keeping only the coefficients of the most singular terms corresponding to i = ℓ, the
identity (2.35) implies that
(2.54)

−∆χ(χ, τ)

8πi

∮
C

dw
R̃(w)(w − zℓ)

· ∂zℓ
∂τ

+

(
1
2
+

∆τ(χ, τ)

8πi

∮
C

dw
R̃(w)(w − zℓ)

)
∂zℓ
∂χ

= 0, ℓ = 1, 2, 3, 4.
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Here, the partial derivatives ∆χ(χ, τ) and ∆τ(χ, τ) are explicitly expressed in terms of z1, . . . , z4

using (2.43)–(2.44).
Therefore, the quantities zℓ = zℓ(χ, τ), ℓ = 1, . . . , 4 satisfy a quasilinear first-order system of

partial differential equations in diagonal (Riemann-invariant) form:

(2.55)
∂zℓ
∂τ

+ sℓ
∂zℓ
∂χ

= 0, ℓ = 1, . . . , 4, sℓ := −∆τ

∆χ
−
[

∆χ

4πi

∮
C

dw
R̃(w)(w − zℓ)

]−1

.

Using (2.38) and (2.43)–(2.44), the characteristic velocities sℓ can be written in the form

(2.56) sℓ = −1
2

Σ1 + 4πiI0

[∮
C

dw
R̃(w)(w − zℓ)

]−1

, ℓ = 1, . . . , 4,

in which we use the notation

(2.57) Σ1 :=
4

∑
i=1

zi, Σ2 :=
4

∑
i,j=1
i ̸=j

zizj, Σ3 :=
4

∑
i,j,k=1
i ̸=j ̸=k

zizjzk.

The quantities sℓ defined by (2.56) agree precisely with the characteristic velocities S(ℓ) defined in
the well-known paper of Forest and Lee [18] on the Whitham modulation theory of the focusing
nonlinear Schrödinger equation after accounting for some typos3 and rescaling the time by a factor
of 2. To see this, we integrate the identity

(2.58)
d

dw
R̃(w)

w − zℓ
=

w2 − 1
2 Σ1w + zℓ( 1

2 Σ1 − zℓ)

R̃(w)
− 1

2

4

∏
i=1
i ̸=ℓ

(zℓ − zi) ·
1

R̃(w)(w − zℓ)

around the cycle C to obtain

1
2

4

∏
i=1
i ̸=ℓ

(zℓ − zi)
∮

C

dw
R̃(w)(w − zℓ)

=
∮

C

w2 − 1
2 Σ1w + zℓ( 1

2 Σ1 − zℓ)

R̃(w)
dw

= 4πiI2 − 2πiΣ1 I1 + 2πizℓ(Σ1 − 2zℓ)I0.

(2.59)

It follows that sℓ given by (2.56) can be written as

(2.60) sℓ =

− 1
2 Σ1 I2 +

1
4 Σ2

1 I1 +

 1
2

4

∏
i=1
i ̸=ℓ

(zℓ − zi)− 1
2 Σ1zℓ( 1

2 Σ1 − zℓ)

I0

I2 − 1
2 Σ1 I1 + zℓ( 1

2 Σ1 − zℓ)I0
.

3Some typos in [18] include: in (II.2b), the first and third equations should read ft = (irx − 2Er)g + (iqx + 2Eq)h and

ht = 2(irx − 2Er) f − 2i(qr − 2E2)h respectively; in the displayed formula for D(1)
j for 0 ≤ j ≤ N − 2 on page 53, an

overall minus sign is missing (at least in the genus-one N = 2 case); in (III.6) a minus sign is missing on the derivative
with respect to X for consistency with (III.2); in (III.10) the characteristic speeds S(k) are off by a sign and the summation
in the numerator should begin with the index j = 0.
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Next, recalling (2.57), we have

(2.61)
4

∏
i=1
i ̸=ℓ

(zℓ − zi) = 4z3
ℓ − 3Σ1z2

ℓ + 2Σ2zℓ − Σ3,

so sℓ becomes a ratio of cubic and quadratic polynomials in zℓ with coefficients that are symmetric
functions of all four points zi, i = 1, . . . , 4:

(2.62) sℓ =
2I0z3

ℓ − Σ1 I0z2
ℓ + (Σ2 − 1

4 Σ2
1)I0zℓ − 1

2 Σ1 I2 +
1
4 Σ2

1 I1 − 1
2 Σ3 I0

−I0z2
ℓ +

1
2 Σ1 I0zℓ + I2 − 1

2 Σ1 I1
.

Finally, since

(2.63)
d

dw
R̃(w) =

4w3 − 3Σ1w2 + 2Σ2w − Σ3

2R̃(w)
,

by integration about the loop C we obtain the identity 2I3 − 3
2 Σ1 I2 + Σ2 I1 − 1

2 Σ3 I0 = 0. Using
this we eliminate I0 from the constant term in the numerator on the right-hand side of (2.62) and
obtain

(2.64) sℓ =
2I0z3

ℓ − Σ1 I0z2
ℓ + (Σ2 − 1

4 Σ2
1)I0zℓ − 2I3 + Σ1 I2 + ( 1

4 Σ2
1 − Σ2)I1

−I0z2
ℓ +

1
2 Σ1 I0zℓ + I2 − 1

2 Σ1 I1
.

Upon dividing numerator and denominator through by I0 ̸= 0, the resulting ratio of polynomials
D(2)

3 z3
ℓ + D(2)

2 z2
ℓ + D(2)

1 zℓ + D(2)
0 and D(1)

2 z2
ℓ + D(1)

1 zℓ + D(1)
0 matches those defined in [18] modulo

the aforementioned time rescaling and typos.

2.5.2. Absolute integrability of derivatives. We now prove the following.

Lemma 2.5. The partial derivatives αχ(χ, τ) and βχ(χ, τ) are absolutely integrable on (χc(τ),+∞).

Proof. Let τ be fixed. By symmetry it suffices to consider prove the integrability of αχ, and since
χ 7→ α(χ, τ) is continuously differentiable with respect to χ on the open interval (χc(τ),+∞) it is
sufficient to examine αχ in the limits χ ↑ +∞ and χ ↓ χc(τ).

Absolute integrability of αχ at χ = +∞. We begin by analyzing λ(χ, τ) as χ → +∞. Since λ1(χ, τ) =

−8χ−2 + O(χ−5) < λ(χ, τ) < λ2(χ, τ) = 8χ−2 + O(χ−5) for large positive χ > 0, we may write
λ(χ, τ) = 2(4− δ2)χ−2 for 0 < δ2 < 8. A calculation then shows that, after rescaling by z = χ− 1

2 w,

(2.65) χ2R(χ− 1
2 w)2 = (w2 − 2)2 + δ2w2 + O(χ− 3

2 )

in the limit χ → +∞, uniformly for bounded w. Next, we rewrite the integral condition (2.21)
with the help of the alternate branch R̃(z) of the square root of R(z)2 defined in (2.46). R̃(z) is
analytic except on Γβ→β∗ ∪ Γα∗→α and satisfies R̃(z) = z2 + O(z) as z → ∞. Using R̃(z) in place of
R(z) gives a corresponding modification h̃′(z) of h′(z). Then the condition (2.21) can be written as

(2.66)
1
2i

∮
L0

h̃′(z) dz = 2
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where L0 is a clockwise-oriented loop surrounding Γα∗→α. Then, in the scaling z = χ− 1
2 w, h̃′(z) =

(2τz + χ − τ2λ)R̃(z)z−2 has the expansion

h̃′(χ− 1
2 w) = χ2R̃(χ− 1

2 w)w−2(1 + O(χ− 3
2 ))

= χ

[
w2 − 2

w2 +
δ2

2(w2 − 2)
+ O

(
δ4

(w2 − 2)3

)
+ O(χ− 3

2 )

]
.

(2.67)

Here the error terms are uniform for w bounded and bounded away from w = ±
√

2. Because
dz = χ− 1

2 dw, for (2.66) to be satisfied it is necessary that the rescaled branch cuts are very near to
w = ±

√
2, so we can fix a rescaled contour L := χ

1
2 L0 enclosing the point w = −

√
2 but excluding

w = 0,
√

2 and then expand (2.66) as

2 =
χ

1
2

2i

∮
L

[
w2 − 2

w2 +
δ2

2(w2 − 2)
+ O

(
δ4

(w2 − 2)3

)
+ O(χ− 3

2 )

]
dw

= χ
1
2

(
πδ2
√

32
+ O(δ4) + O(χ− 3

2 )

)
.

(2.68)

This shows that δ2 is necessarily large compared with χ− 3
2 as χ → +∞, and in fact

(2.69) δ2 =

√
128
π

χ− 1
2 + O(δ4) + O(χ− 3

2 ) =

√
128
π

χ− 1
2 + O(χ−1).

With λ = λ(χ, τ), combining (2.29) (replacing h′, R with h̃′, R̃) with

(2.70)
∂h̃′

∂χ
(z) =

(
z2 +

1
2

τλz + τ2λ2 − 3
4

χλ + 48(τ2λ − χ)−4τ2
)

1
R̃(z)

,

implicit differentiation of (2.66) yields

(2.71)
∂λ

∂χ
=

4(τ2λ − χ)4

Q(λ; χ, τ)

∮
L0

(
z2 +

1
2

τλz + τ2λ2 − 3
4

χλ + 48(τ2λ − χ)−4τ2
)

dz
R̃(z)∮

L0

dz
R̃(z)

.

Using λ = 2(4 − δ2)χ−2 with δ2 = O(χ− 1
2 ), it is straightforward to obtain

(2.72)
4(τ2λ − χ)4

Q(λ; χ, τ)
= 4χ−2 + 192τ2χ−5 + O(χ− 11

2 ), χ → +∞.

For the ratio of integrals in (2.71), the constant terms in the integrand of the numerator have the
expansion

(2.73) τ2λ2 − 3
4

χλ + 48(τ2λ − χ)−4τ2 = −6χ−1 + O(χ− 3
2 ), χ → +∞,

and for the remaining terms we use the substitution z = χ− 1
2 w and the expansion (2.65) to obtain

(2.74)

∮
L0

(
z2 +

1
2

τλz
)

dz
R̃(z)∮

L0

dz
R̃(z)

=

∮
L

(
χ−1w2 + (4 − δ2)τχ− 5

2 w
) dw

χR̃(χ− 1
2 w)∮

L

dw

χR̃(χ− 1
2 w)

= 2χ−1 + O(χ− 3
2 )
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as χ → +∞, where we used the fact that L encloses but is bounded away from the pole at w =

−
√

2. The ratio of integrals is therefore −4χ−1 + O(χ− 3
2 ), so combining with (2.72) gives

(2.75)
∂λ

∂χ
= −16χ−3 + O(χ− 7

2 ), χ → +∞.

Now differentiation with respect to χ for α = α(χ, τ) of the monic quartic equation R(α)2 =

α4 − S1α3 + S2α2 − S3α + S4 = 0 yields

(2.76)
∂α

∂χ
=

α3b1 − α2b2 + αb3 − b4

(α − α∗)(α − β)(α − β∗)
,

in which bj = Sj,χ for j = 1, . . . , 4 are given by

(2.77)
b1 = −τ

∂λ

∂χ
, b2 = −1

2
λ +

1
2
(3τ2λ − χ)

∂λ

∂χ
,

b3 = − 48τ

(τ2λ − χ)4

(
1 − τ2 ∂λ

∂χ

)
, b4 =

8
(τ2λ − χ)3

(
1 − τ2 ∂λ

∂χ

)
.

Since the roots of R(χ− 1
2 w)2 converge to w = ±

√
2 as χ → +∞, it is immediate that |α − β| ≳

χ− 1
2 and |α − β∗| ≳ χ− 1

2 . Expanding (2.65) shows that the roots near w = −
√

2 satisfy w =

−
√

2 ± 1
2 iδ + O(δ2) which implies that |α − α∗| ≳ χ− 1

2 δ ≳ χ− 3
4 . For the numerator in (2.76), from

|α| ≲ χ− 1
2 we then obtain α3b1 = O(χ− 3

2 χ−3) = O(χ− 9
2 ) and αb3 = O(χ− 1

2 χ−4) = O(χ− 9
2 ).

Some useful cancellation then occurs in the combination α2b2 + b4 via α2 = 2χ−1 + O(χ− 5
4 ), b2 =

4χ−2 + O(χ− 5
2 ), and b4 = −8χ−3 + O(χ−6), hence α2b2 + b4 = O(χ− 13

4 ). Using these estimates in
(2.76) yields |αχ| ≲ χ− 3

2 as χ → +∞, which is integrable.

Absolute integrability of αχ at χ = χc(τ). Fix τ ∈ R. For the other limit χ ↓ χc := χc(τ), the roots
z = α, β of the quartic R(z)2 coalesce at z = ξ, Im(ξ) > 0, which leads to divergence of the contour
integrals in (2.71) and logarithmic corrections in the sub-leading order terms in the expansion of
f (λ; χ, τ) defined in (2.27). To study this behavior, we first recall that since h(z) and ϑ(z; χ, τ) agree
when χ = χc, using (2.15)–(2.16) we may parametrize the limiting values (χc, τ, λc) of (χ, τ, λ) by
the common limiting value ξ = u + iv (with v > 0) of α, β. With this notation, from (2.71) one can
observe that the polynomial in the integrand of the numerator has the same limiting value at the
two points z = ξ, ξ∗ at which the denominator becomes small:

(2.78)
(

z2 +
1
2

τλcz
)∣∣∣∣

z=u±iv
= −(u2 + v2).

Therefore, the most singular contribution of the numerator integral in the limit χ ↓ χc is explicitly
proportional to that of the denominator integral, so the ratio of these integrals tends to the limit
18u2 + 2v2. Evaluating the remaining factors in (2.71) in the limit, we therefore deduce that the
partial derivative λχ has a well-defined finite limiting value as χ ↓ χc that we denote by λχ,c:

(2.79) λχ,c := lim
χ↓χc

∂λ

∂χ
(χ, τ) =

2(u2 + v2)4

9u2 + v2 .

Since its derivative is continuous for χ ≥ χc, it follows that we may represent λ(χ, τ) in the form

(2.80) λ(χ, τ) = λc + λχ,c∆χ + ∆λ, ∆χ := χ − χc,
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where ∆λ = o(∆χ) as ∆χ ↓ 0.
We now determine the leading term of ∆λ. Starting from (2.25), with γ = −χ + τ2λ, we write

h′(z) in the form

(2.81) h′(z) =
1
z2 L(z)r(z)r(z∗)∗,

where L(z) is the linear function

(2.82) L(z) := 2τz + χc − τ2λc + (1 − τ2λχ,c)∆χ − τ2∆λ,

and where r(z)2 = (z − α)(z − β) and r(z) = z + O(1) as z → ∞ with r having a straight-line
branch cut joining α, β. Let ξ̂ = 1

2 (α+ β) denote the midpoint of the branch cut. Then since r(z) has
opposite signs on opposite sides of its branch cut and elsewhere is analytic, in the definition (2.27)
we may replace the integral over a path from α∗ to α by the average of two integrals over Schwarz-
symmetric paths denoted Â±, each of which goes from ξ̂∗± to ξ̂± in the domain of analyticity of
h′(z), where ξ̂± are points at z = ξ̂ on opposite sides of the branch cut for r. It is not important
where Â± cross the real line other than the pole z = 0 of h′(z), because the residue of h′(z) at z = 0
vanishes. Concretely, we assume that Â± are as follows. Let C be the circle centered at ξ̂ with
radius 1

2 Im(ξ̂); let J denote one of the two points on C with Im(J) = Im(ξ̂) for which |Re(J)| is
largest. Thus Re(J) ̸= 0. Finally, let Ain

± denote the two segments from antipodal points J± of C to
ξ̂ that are perpendicular to the branch cut between α and β. Then Â± ∩ C consists of the vertical
line from z = Re(J) ̸= 0 to J followed by a shortest arc of C terminating at J± followed by Âin

± .
Thus we arrive at the rewritten integral condition

0 = f (λ; χ, τ) :=
1
2i

∫
Â+∪Â−

L(z)r(z)r(z∗)∗
dz
z2 − 2

=Im
(∫

(Â+∪Â−)∩C+

L(z)r(z)r(z∗)∗
dz
z2

)
− 2,

(2.83)

where the second formula follows by Schwarz symmetry. Now let ρ := |α − ξ̂| = |β − ξ̂| =
1
2 |β − α|. We use the following representation of r(z∗)∗:

(2.84) r(z∗)∗ = (z − ξ̂∗)

(
1 − (β∗ − α∗)2

4(z − ξ̂∗)2

) 1
2

= z − ξ̂∗ + m(z)

where by Taylor expansion it follows that m(z) = O(ρ2) holds uniformly for z in bounded subsets
of C+ since ξ̂∗ ∈ C−. We also use a corrected representation of r(z):

(2.85) r(z) = z − ξ̂ − 1
8
(β − α)2

(
1

z − ξ̂

)
ρ

+ e(z),

where (1/ζ)ρ := χ|ζ|>ρ(ζ)/ζ is a cutoff version of 1/ζ. By Taylor expansion in 1
4 (β − α)/(z − ξ̂),

it is easy to see that e(z) = O(ρ3/(z − ξ̂)2) for |z − ξ̂| > ρ; also since e(z) = r(z) − (z − ξ̂) for
|z − ξ̂| ≤ ρ, using |r(z)| ≤ (|z − ξ̂|+ ρ) it follows that e(z) = O(ρ) for |z − ξ̂| ≤ ρ. These estimates
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imply that e ∈ L1((Â+ ∪ Â−) ∩ C+) with norm

(2.86) ∥e∥L1((Â+∪Â−)∩C+)
≲
∫
(Â+∪Â−)∩C+

|z−ξ̂|>ρ

ρ3 |dz|
|z − ξ̂|2

+
∫
(Â+∪Â−)∩C+

|z−ξ̂|≤ρ

ρ |dz| ≲ ρ2.

Since L(z)/z2 is uniformly bounded on the union of contours (Â+ ∪ Â−) ∩ C+ as ξ̂ → ξ, it then
follows that
(2.87)

f (λ; χ, τ) = Im

(∫
(Â+∪Â−)∩C+

L(z)

[
z − ξ̂ − 1

8
(β − α)2

(
1

z − ξ̂

)
ρ

]
(z − ξ̂∗)

dz
z2

)
− 2 + O(ρ2).

We explicitly evaluate the terms not involving the cutoff function defined as

(2.88) f0(λ; χ, τ) := Im
(∫

(Â+∪Â−)∩C+

L(z)(z − ξ̂)(z − ξ̂∗)
dz
z2

)
− 2

by first noticing that since the integrand vanishes to first order at the common endpoint ξ̂ of Â±,
and since ξ̂ − ξ = O(ρ), we may write

(2.89) f0(λ; χ, τ) = Im
(∫

(A+∪A−)∩C+

L(z)(z − ξ̂)(z − ξ̂∗)
dz
z2

)
− 2 + O(ρ2),

where A± now are contours terminating at ξ instead of ξ̂. We next observe that, because the
integral condition is definitely satisfied when ∆χ = 0 and ∆λ = 0 and α = β = ξ (so that also
r(z)r(z∗)∗ = (z − ξ)(z − ξ∗)), we have the identity

(2.90) Im
(∫

(A+∪A−)∩C+

L0(z)(z − ξ)(z − ξ∗)
dz
z2

)
= 2, L0(z) := 2τz + χc − τ2λc.

Therefore, since L(z)− L0(z) = (1 − τ2λχ,c)∆χ − τ2∆λ = (1 − τ2λχ,c)∆χ + o(∆χ), and

(z − ξ̂)(z − ξ̂∗)− (z − ξ)(z − ξ∗) = −2Re(ξ̂ − ξ)z + |ξ̂|2 − |ξ|2

= −2Re(ξ̂ − ξ)z + 2Re((ξ̂ − ξ)ξ∗) + O(ρ2),
(2.91)

which in particular is o(1) as ∆χ → 0, we get

(2.92) f0(λ; χ, τ) = (1 − τ2λχ,c)∆χIm
(∫

(A+∪A−)∩C+

(z − ξ)(z − ξ∗)
dz
z2

)
+ Im

(∫
(A+∪A−)∩C+

L0(z)
[
−2Re(ξ̂ − ξ)z + 2Re((ξ̂ − ξ)ξ∗)

]dz
z2

)
+ o(∆χ) + O(ρ2).

The last step in evaluating f0(λ; χ, τ) is to determine the leading asymptotic behavior of ξ̂ − ξ,
which turns out to be proportional to ∆χ.

For this purpose, we now study the asymptotic behavior of z = α, β by seeking small roots
w of the quartic R(ξ + w)2. To simplify the use of the expansions of χ and λ, we first multiply
through by (τ2λ − χ)3 ̸= 0 (see Lemma 2.1). Then (τ2λ − χ)3R(ξ + w)2 has coefficients that are
all polynomials in ∆χ and ∆λ and that are rational in (u, v) with common denominator 2(u2 +
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v2)16(9u2 + v2)5. Therefore clearing that denominator:

(2.93) (τ2λ − χ)3R(ξ + w)2 =
p(w)

2(u2 + v2)16(9u2 + v2)5 , p(w) :=
4

∑
j=0

pjwj,

where the coefficients pj are polynomials in u, v, ∆χ, ∆λ with expansions with respect to the small
parameters ∆χ and ∆λ of the form:

(2.94)

p4 = O(1), p3 = O(1), p2 = 64v2(u2 + v2)13(9u2 + v2)5 + O(∆χ),

p1 = −32iv(u + iv)(3u + iv)(u2 + v2)15(9u2 + v2)4∆χ + O(∆λ),

p0 = 16(u + iv)(3u + iv)(u2 + v2)11(9u2 + v2)6∆λ + O(∆χ2).

Here we used the relations ∆λ = o(∆χ) and ∆χ = o(1) only to express the error terms. Setting
p(w) = 0 and seeking dominant balances for small w, since p2 has a positive limit as ∆χ → 0,
the terms p4w4 + p3w3 are definitely negligible compared to p2w2. From the remaining quadratic,
linear, and constant terms, we can determine the leading-order asymptotic behavior of the sum
and product of the roots:

(2.95) w1 + w2 = α + β − 2ξ = − p1

p2
(1 + o(1)) =

i(u + iv)(3u + iv)(u2 + v2)2

2v(9u2 + v2)
∆χ(1 + o(1)),

(2.96) w1w2 = (α − ξ)(β − ξ) =
p0

p2
(1 + o(1)) =

(u + iv)(3u + iv)(9u2 + v2)

4v2(u2 + v2)2 ∆λ(1 + o(1)).

In particular since α + β = 2ξ̂, we can combine (2.95) with (2.92) and use v = Im(ξ) to give a
remarkably simple formula:

(2.97) f0(λ; χ, τ) = Im
(∫

(A+∪A−)∩C+

dz
)

∆χ + o(∆χ) + O(ρ2) = 2v∆χ + o(∆χ) + O(ρ2).

Therefore, going back to f (λ; χ, τ) using (2.87)–(2.88) we have

(2.98) f (λ; χ, τ) = 2v∆χ − 1
8

Im

(
(β − α)2

∫
(Â+∪Â−)∩C+

L(z)
(

1
z − ξ̂

)
ρ

(z − ξ̂∗)
dz
z2

)
+ o(∆χ) + O(ρ2).

Since (β − α)2 = O(ρ2), all bounded contributions from the integral can be absorbed into the error
terms. Due to the cutoff χ|z−ξ̂|>ρ(z) implicit in the integrand, we are essentially integrating in z

up to a pair of antipodal points a distance ρ from ξ̂, and the only contribution to the integral that
grows as ρ → 0 comes from a logarithmic singularity at z = ξ̂. Thus,

(2.99)
∫
(Â+∪Â−)∩C+

L(z)
(

1
z − ξ̂

)
ρ

(z − ξ̂∗)
dz
z2 = −2

L(ξ̂)(ξ̂ − ξ̂∗)

ξ̂2
ln
(

1
ρ

)
+ O(1), ρ → 0.
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Since ξ̂ = ξ + O(ρ) and ρ ln(1/ρ) is bounded as ρ → 0, we can replace ξ̂ with the limiting value ξ

and absorb the difference into the error terms. Therefore,

f (λ; χ, τ) = 2v∆χ +
1
4

Im
(

L(ξ)(ξ − ξ∗)

ξ2 (β − α)2
)

ln
(

1
ρ

)
+ o(∆χ) + O(ρ2)

= 2v∆χ +
1
4

Im
(

L0(ξ)(ξ − ξ∗)

ξ2 (β − α)2
)

ln
(

1
ρ

)
+ o(∆χ) + O(ρ2),

(2.100)

where on the second line we used the fact that ρ2 ln(1/ρ) = o(1) as ∆χ → 0 and hence also ρ → 0
to replace L(ξ) with L0(ξ). Note that in terms of ξ = u + iv, we have

(2.101)
L0(ξ)(ξ − ξ∗)

ξ2 =
4iv(3u − iv)(u − iv)

(u2 + v2)3 .

Now, (β− α)2 = ((β− ξ)− (α− ξ))2 = (α+ β− 2ξ))2 − 4(α− ξ)(β− ξ) = (w1 +w2)2 − 4w1w2,
so this quantity can be approximated using (2.95) and (2.96), and it is a sum of terms proportional
to ∆χ2 and ∆λ. A priori, it is not clear which of these terms is dominant, although it is known that
∆λ = o(∆χ). To answer this question, suppose that ∆λ = O(∆χ2). Then also (β − α)2 = O(∆χ2)

and hence ρ = O(∆χ), so using (2.100) the integral condition on λ becomes

(2.102) 0 = f (λ; χ, τ) = 2v∆χ + o(∆χ) if ∆λ = O(∆χ2),

because ρ 7→ ρ2 ln(1/ρ) is monotone increasing for small ρ > 0. Since v = Im(ξ) > 0, this is
clearly a contradiction because ∆χ > 0 holds for χ > χc. Therefore, in fact ∆λ is large compared
with ∆χ2, and so

(2.103) (β − α)2 = −4w1w2(1 + o(1)) = − (u + iv)(3u + iv)(9u2 + v2)

v2(u2 + v2)2 ∆λ(1 + o(1)).

So, multiplying by L0(ξ)(ξ − ξ∗)/ξ2 gives a product that is purely imaginary to leading order and
therefore the integral condition on λ actually reads

(2.104) 0 = f (λ; χ, τ) = 2v∆χ − (9u2 + v2)2

2v(u2 + v2)4 ∆λ ln
(

1
|∆λ|

)
+ o(∆χ),

where we used the fact that ln(1/ρ) = 1
2 ln(1/|∆λ|) + O(1).

Finally, we return to (2.76) and (2.77) and note that since α → ξ = u+ iv, λ → λc and λχ → λχ,c,

(2.105) lim
χ↓χc

α3b1 − α2b2 + αb3 − b4 = 0.

Also, since (α − α∗)(α − β∗) → −4Im(ξ)2 ̸= 0 we clearly have

(2.106)
∣∣∣∣ ∂α

∂χ

∣∣∣∣ = o
(

1
|β − α|

)
= o

(
1

|∆λ| 1
2

)
= o

((
|∆λ| ln

(
1

|∆λ|

))− 1
2−ϵ
)

, χ ↓ χc(τ)

holds for every ϵ > 0. Therefore, using (2.104) gives |αχ| = o(∆χ− 1
2−ϵ) which is integrable at

∆χ = χ − χc(τ) = 0 by taking ϵ < 1
2 .

This completes the proof. □

2.6. Use of g(z). Assuming χ > χc(τ), we take the jump contour Γ for Riemann-Hilbert Prob-
lem 3 to be that described at the end of Section 2.4. We introduce a new unknown T(z; χ, τ, M) by
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setting

(2.107) T(z; χ, τ, M) := S(z; χ, τ, M)eiMg(z)σ3 , z ∈ C \ Γ.

Then, from the conditions of Riemann-Hilbert Problem 3 we see that T(·; χ, τ, M) is analytic in
its domain of definition, takes continuous boundary values on Γ from each side, and tends to I

as z → ∞. Moreover, since g(z) = g(z∗)∗, the matrix T(z; χ, τ, M) inherits from S(z; χ, τ, M) the
Schwarz symmetry (2.5). The jump conditions satisfied by T(z; χ, τ, M) across the arcs of Γ read
as follows:

(2.108) T+(z; χ, τ, M) = T−(z; χ, τ, M)

[√
1 − e−4M −e−2iM(h(z)−i)

e2iM(h(z)+i)
√

1 − e−4M

]
, z ∈ Γα∗→α,

(2.109) T+(z; χ, τ, M)

[
1 0√

1 − e−4Me2iM(h+(z)−i) 1

]

= T−(z; χ, τ, M)

[
1 0

−
√

1 − e−4Me2iM(h−(z)−i) 1

][
0 −e−iMϕ

eiMϕ 0

]
, z ∈ Γα→β,

(2.110) T+(z; χ, τ, M) = T−(z; χ, τ, M)

[ √
1 − e−4MeiM∆ −e−iM(h+(z)+h−(z)−2i)

eiM(h+(z)+h−(z)+2i)
√

1 − e−4Me−iM∆

]
, z ∈ Γβ→β∗ ,

and there is a jump condition on Γβ∗→α∗ that follows from that on Γα→β by Schwarz symmetry. We
have written the jump condition across Γα→β in factorized form to facilitate the opening of small
lenses surrounding this arc and its reflection Γβ∗→α∗ . Letting Ω+

α→β and Ω−
α→β denote lens-shaped

regions to the left and right respectively of Γα→β, we define

(2.111) O(z; χ, τ, M) := T(z; χ, τ, M)

[
1 0

±
√

1 − e−4Me2iM(h(z)−i) 1

]
, z ∈ Ω±

α→β.

To preserve Schwarz symmetry in the form (2.5) for O(z; χ, τ, M) we make corresponding substi-
tutions in the reflected domains Ω±∗

α→β and elsewhere we set O(z; χ, τ, M) := T(z; χ, τ, M). The
jump conditions for O(z; χ, τ, M) read as follows. Let Λ±

α→β denote the outer boundary of the lens
domain Ω±

α→β with the orientation from α to β. Then,

(2.112) O+(z; χ, τ, M) = O−(z; χ, τ, M)

[√
1 − e−4M −e−2iM(h(z)−i)

e2iM(h(z)+i)
√

1 − e−4M

]
, z ∈ Γα∗→α,

(2.113) O+(z; χ, τ, M) = O−(z; χ, τ, M)

[
0 −e−iMϕ

eiMϕ 0

]
, z ∈ Γα→β,

(2.114) O+(z; χ, τ, M) = O−(z; χ, τ, M)

[
1 0

−
√

1 − e−4Me2iM(h(z)−i) 1

]
, z ∈ Λ±

α→β,
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(2.115) O+(z; χ, τ, M) = O−(z; χ, τ, M)

[ √
1 − e−4MeiM∆ −e−iM(h+(z)+h−(z)−2i)

eiM(h+(z)+h−(z)+2i)
√

1 − e−4Me−iM∆

]
, z ∈ Γβ→β∗ ,

and on the reflected contours Γβ∗→α∗ and Λ±∗
α→β there are corresponding jump conditions induced

by Schwarz symmetry. Since O(z; χ, τ, M) = T(z; χ, τ, M) holds for |z| sufficiently large, while
T(z; χ, τ, M) is related to S(z; χ, τ, M) by (2.107) where g(∞) = 0, it follows from (2.6) that also

(2.116) MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) = 2i lim
z→∞

zO12(z; χ, τ, M).

A useful formula for the constant ∆ ∈ R can be found as follows. Let z denote the real point on
the arc Γβ→β∗ . Then, since ϑ(z) is single-valued,

(2.117) ∆ = h+(z)− h−(z) = (g+(z) + ϑ+(z))− (g−(z) + ϑ−(z)) = g+(z)− g−(z)

assuming also that z ̸= 0 (we can deform Γβ→β∗ if necessary to ensure this). Using (2.34) and
integrating on the real line from ∞ = ±∞ for calculating g±(z),

(2.118) ∆ =
∫ z

+∞

[
h′(Z)− ϑ′(Z)

]
dZ −

∫ z

−∞

[
h′(Z)− ϑ′(Z)

]
dZ = −

∫
R

[
h′(Z)− ϑ′(Z)

]
dZ.

Clearly the result is independent of z. Using (2.25) and the definition of ϑ(z) in (1.11) gives

(2.119) ∆ = −
∫

R

[
2τz + χ − τ2λ

z2 R(z)− χ − 2τz − 2
z2

]
dz.

The apparent singularities of the integrand at z = 0 and z = ∞ cancel by choice of the branch
points α = α(χ, τ) and β = β(χ, τ), so the integral is absolutely convergent and since the integrand
is analytic except for the branch cuts Γα→β and Γβ∗→α∗ , Cauchy’s theorem can be applied to replace
R with a counterclockwise-oriented loop surrounding the cut Γα→β. Then, with this replacement,
the contribution to the integrand from ϑ′(z) vanishes as it is analytic inside the loop, so ultimately
the result is that

(2.120) ∆ = 2
∫

Γα→β

2τz + χ − τ2λ

z2 R+(z) dz.

Combining the first identities in (2.24) and (2.26) gives −τ2λ = 2τRe(α + β), so to implement this
formula requires only determining α and β as functions of (χ, τ) ∈ R2 with χ > χc(τ).

2.7. Outer parametrix. The properties of h(z) now imply that all of the exponential factors involv-
ing h(z) decay rapidly to zero as M → +∞, although the decay is not uniform in neighborhoods
of the four points α, β, α∗, β∗. The outer parametrix captures the pointwise asymptotic behavior of
the jump matrices.

Riemann-Hilbert Problem 4 (Outer parametrix). Let ϕ and ∆ be given real numbers. Seek a 2 × 2
matrix-valued function Ŏout(z) with the following properties:

Analyticity: Ŏout(z) is analytic in z for z ∈ C \ Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗ , and it takes contin-
uous boundary values except near the four points α, β, α∗, β∗ at which negative one-fourth
power singularities are admissible in all four matrix elements.
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Jump conditions: The boundary values on the jump contour are related as follows:

(2.121) Ŏout
+ (z) = Ŏout

− (z)

[
0 −e−iMϕ

eiMϕ 0

]
, z ∈ Γα→β ∪ Γβ∗→α∗ ,

(2.122) Ŏout
+ (z) = Ŏout

− (z)

[
eiM∆ 0

0 e−iM∆

]
, z ∈ Γβ→β∗ .

Normalization: Ŏout(z) → I as z → ∞.

To solve this problem, first note that the matrix F(z) := e−iπσ3/4eiMϕσ3/2Ŏout(z)e−iMϕσ3/2eiπσ3/4

satisfies exactly the same conditions as does Ŏout(z) except that the jump conditions on Γα→β ∪
Γβ∗→α∗ are reduced to the simple form F+(z) = F−(z)iσ1.

Let j(z) denote the function analytic for z ∈ C \ (Γα→β ∪ Γβ∗→α∗) with asymptotic behavior
j(z) → 1 as z → ∞ and that satisfies

(2.123) j(z)4 =
(z − α)(z − β∗)

(z − α∗)(z − β)
.

This function satisfies the scalar jump condition j+(z) = −ij−(z) on both arcs of its jump contour:
Γα→β ∪ Γβ∗→α∗ . From j(z), we define two related functions:

(2.124) FD(z) :=
1
2

(
j(z) + j(z)−1

)
, FOD(z) :=

1
2i

(
j(z)− j(z)−1

)
.

Note that

FD(z)FOD(z) =
1

4ij(z)2

(
j(z)4 − 1

)
=

(z − α)(z − β∗)− (z − α∗)(z − β)

4ij(z)2(z − α∗)(z − β)

=
(α∗ + β − α − β∗)z + αβ∗ − α∗β

4iR(z)
.

(2.125)

Unless Im(β) = Im(α), this product has a single real-valued root:

(2.126) FD(z)FOD(z) = 0 ⇐⇒ z = z0 :=
Im(α∗β)

Im(β)− Im(α)
.

We notice that j(z) is a well-defined quantity of unit modulus for all z ∈ R, so we can write it as
j(z) = eiθ , in which case FD(z) = cos(θ) and FOD(z) = sin(θ). By the argument principle, using
the fact that j(z)4 has one pole and one zero on either side of the real line, j(z)4 has zero winding
number as z traverses the real line. This implies that θ is a real analytic function of z ∈ R that
tends to zero in both limits z → ±∞. Since the roots of FD(z) correspond to values θ ∈ π(Z + 1

2 )

(and hence θ ̸= 0), they must therefore be even in number (counted with multiplicity). Because z0

is the unique simple root of FD(z)FOD(z), it follows that FOD(z0) = 0. Note that j+(z) = −ij−(z)
implies that

(2.127) FD
+ (z) = FOD

− (z) and FOD
+ (z) = −FD

− (z), z ∈ Γα→β ∪ Γβ∗→α∗ .
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Also,

(2.128) FD(z) → 1 and FOD(z) =
Im(β)− Im(α)

2z
+ O(z−2), z → ∞.

Finally, observe that according to the jump conditions (2.127), the function k defined on a two-
sheeted cover R of the z-plane joined at the cuts Γα→β ∪ Γβ∗→α∗ by setting k(z) := FOD(z)2 on
one sheet and k(z) := FD(z)2 on the other sheet is a meromorphic function on R with simple
poles at the branch points α, β, α∗, β∗ and double zeros at z = z0 and z = ∞ on the sheet where
k(z) = FOD(z)2 (and no other poles or zeros).

Let L denote a clockwise-oriented loop surrounding the arc Γα→β, and consider the integrals

(2.129) IA := 2
∫ α

α∗

dz
R(z)

, IB :=
∮

L

dz
R(z)

,

where the path of integration in IA is a straight vertical line in the domain of analyticity of R(z).
Since R(z∗) = R(z)∗, it follows that IA is purely imaginary; in fact, since R(z) > 0 at the midpoint
of the integration contour, it can be shown that IA is strictly positive imaginary. Also by Cauchy’s
theorem, the contour of integration in IB can be replaced by R with right-to-left orientation and
therefore IB < 0 because R(z) > 0 for z ∈ R. Passing to the Riemann surface of y2 = R(z)2, IA and
IB are integrals of the same holomorphic differential over a canonical basis (A,B) of homology.
We can simplify these integrals as follows.

Provided that Re(α) < Re(β), the points α, β, α∗, β∗ all lie on a circle with center x ∈ R and
radius ρ > 0 given by

(2.130) x :=
|β|2 − |α|2

2Re(β)− 2Re(α)
and ρ :=

|α − β||α − β∗|
2|Re(β)− Re(α)| .

By the affine transformation w = (z − x)/ρ, we get

(2.131) IA =
2
ρ

∫ eiθα

e−iθα

dw
S(w)

, IB =
1
ρ

∮
L̃

dw
S(w)

where S(w) is a corresponding square root of the monic quartic in w with roots w = e±iθα and
w = e±iθβ , in which θα = arg(α − x) ∈ (0, π) and θβ = arg(β − x) ∈ (0, π). Note that S(w) =

w2 + O(w) as w → ∞, and we may assume that S(w) is cut on the upper unit semicircle between
w = eiθα and w = eiθβ as well as its Schwarz reflection. We assume that the points α, β are labeled
such that 0 < θβ < θα < π. A fractional linear transformation taking w = e±iθα to W = ±1
respectively is

(2.132) W = i tan( 1
2 θα)

w + 1
w − 1

.

The same transformation maps w = e±iθβ to W = ±m−1/2 = ± tan( 1
2 θα) cot( 1

2 θβ). Since θ 7→
cot( 1

2 θ) is positive and monotone decreasing on 0 < θ < π, it follows that 0 < m < 1. Therefore,

(2.133) IA =
i

ρ sin( 1
2 θα) cos( 1

2 θβ)

∫ 1

−1

dW√
1 − W2

√
1 − mW2

, m = cot2( 1
2 θα) tan2( 1

2 θβ).
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Similarly, by collapsing the image of L̃ in the W-plane to the opposite sides of the real interval
[1, m− 1

2 ] we obtain

(2.134) IB = − 1
ρ sin( 1

2 θα) cos( 1
2 θβ)

∫ m− 1
2

1

dW√
W2 − 1

√
1 − mW2

, m = cot2( 1
2 θα) tan2( 1

2 θβ).

By definition of the complete elliptic integral K(m) of the first kind

(2.135) K(m) :=
∫ 1

0

dx√
1 − x2

√
1 − mx2

, 0 < m < 1,

one easily sees that

(2.136) IA =
2iK(m)

ρ sin( 1
2 θα) cos( 1

2 θβ)
, m = cot2( 1

2 θα) tan2( 1
2 θβ).

One can write IB in a similar form by means of the substitution mW2 = 1 − (1 − m)Z2 mapping
W ∈ (1, m− 1

2 ) onto Z ∈ (0, 1):

(2.137) IB = − 1
ρ sin( 1

2 θα) cos( 1
2 θβ)

∫ 1

0

dZ√
1 − Z2

√
1 − (1 − m)Z2

= − K(1 − m)

ρ sin( 1
2 θα) cos( 1

2 θβ)
.

It follows that

(2.138) H := 2πi
IB
IA

= −π
K(1 − m)

K(m)
< 0, m = cot2( 1

2 θα) tan2( 1
2 θβ).

In the situation that Re(β)− Re(α) tends to zero while Im(α) > Im(β) > 0, the elliptic parameter
m has limiting value [Im(β)/Im(α)]2 ∈ (0, 1), so H makes sense as well.

The Abel map is defined as follows:

(2.139) A(z) :=
2πi
IA

∫ z

α

dz′

R(z′)
, z ∈ C \ (Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗),

and it is single-valued and analytic in its domain of definition. Its boundary values are related by:

(2.140) A+(z) + A−(z) = 0, z ∈ Γα→β,

(2.141) A+(z)− A−(z) = H, z ∈ Γβ→β∗ ,

(2.142) A+(z) + A−(z) = −2πi, z ∈ Γβ∗→α∗ .

Note that the Abel map can be extended from its domain of definition to the whole Riemann
surface R by using the definition (2.139) on the sheet of R where k(z) = FOD(z)2 and changing
the sign on the other sheet; then allowing the path of integration to be arbitrary on R, the lift of
A(z) to R becomes well-defined modulo integer multiples of 2πi and H. According to the Abel-
Jacobi theorem, this extended Abel map acting linearly on divisors of meromorphic functions on
R yields zero (modulo the period lattice). Applying this result to the meromorphic function k
whose divisor is (k) = 2zOD

0 + 2∞OD − α − β − α∗ − β∗ (the superscript denotes the sheet where
k(z) = FOD(z)2) and noticing that the sum of A applied to the four branch points yields a period,
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we learn that the function defined precisely by (2.139) satisfies

(2.143) 2A(z0) + 2A(∞) = 2πin1 + Hn2

for some particular n1, n2 ∈ Z (mod 2) (each of A(z0) and A(∞) is well-defined modulo integer
multiples of 2πi and H). In fact4, we may take n1 = −1 and n2 = 1.

The Riemann theta function is defined for w ∈ C and Re(H) < 0 by

(2.144) Θ(w; H) := ∑
n∈Z

e
1
2 n2 Henw,

and it is an entire function of w satisfying the identities
(2.145)

Θ(−w; H) = Θ(w; H), Θ(w + 2πi; H) = Θ(w; H), and Θ(w ± H; H) = e−
1
2 He∓wΘ(w; H).

It has only simple zeros, and they are located at the lattice points w = (j + 1
2 )2πi + (k + 1

2 )H for
(j, k) ∈ Z2. We denote the zero for j = k = 0 by K:

(2.146) K := iπ +
1
2

H.

Taking an arbitrary complex shift s ∈ C and a point z0 ∈ C \ (Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗), we define
two functions of z by

(2.147) q±(z; z0, s) :=
Θ(A(z)± A(z0)±K− s; H)

Θ(A(z)± A(z0)±K; H)
, z ∈ C \ (Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗).

One can check that q+ is analytic in its domain of definition. On the other hand q− has a simple
pole at z = z0, and this is its only singularity (unless s is an integer linear combination of 2πi and
H in which case the singularity is cancelled and q− becomes analytic). Taking boundary values, it
follows from Θ(−w; H) = Θ(w; H), Θ(w + 2πi; H) = Θ(w; H), (2.140), and (2.142) that

(2.148) q±+(z; z0, s) = q∓−(z; z0,−s), z ∈ Γα→β ∪ Γβ∗→α∗ .

Similarly, it follows from Θ(w + H; H) = e−
1
2 He−wΘ(w; H) and (2.141) that

(2.149) q±+(z; z0, s) = esq±−(z; z0, s), z ∈ Γβ→β∗ .

Therefore, the matrix Q(z) defined by

(2.150) Q(z) :=

[
q+(z; z0, s) −iq−(z; z0,−s)
iq−(z; z0, s) q+(z; z0,−s)

]
satisfies the following jump conditions

(2.151) Q+(z) = Q−(z)

[
0 −i
i 0

]
, z ∈ Γα→β ∪ Γβ∗→α∗ ,

4Since n1 and n2 are integers and the left-hand side depends continuously on α and β, we can calculate them from
a limiting configuration in which α = e3πi/4 and β = eiπ/4. In this limit, z0 → ∞ so we should evaluate 4A(∞) in
the limiting configuration. To do this, we take a path of integration from z = α = e3πi/4 along the unit circle in the
counterclockwise direction to z = −1 and then a real path from z = −1 to z = −∞. The leg of the path on the unit
circle gives a purely imaginary contribution to 4A(∞) equal to −2πi while the symmetries R(z) = R(−z) = z2R(z−1)
valid for z ∈ R show that the real leg of the path gives a real contribution to 4A(∞) equal to H.
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and

(2.152) Q+(z) = Q−(z)esσ3 , z ∈ Γβ→β∗ .

Identifying z0 with the value given in (2.126), which is the simple root of FOD(z), we can modify
Q(z) as follows:

(2.153) Q̃(z) :=

[
FD(z)q+(z; z0, s) −iFOD(z)q−(z; z0,−s)

−iFOD(z)q−(z; z0, s) FD(z)q+(z; z0,−s)

]
.

With this modification, the pole at z = z0 in q−(z; z0,±s) is removed, and so Q̃(z) is analytic in the
complement of the jump contour. Using the jump conditions (2.127) one has

(2.154) Q̃+(z) = Q̃−(z)iσ1, z ∈ Γα→β ∪ Γβ∗→α∗ .

Using the fact that FD(z) and FOD(z) are analytic on Γβ→β∗ , one has

(2.155) Q̃+(z) = Q̃−(z)esσ3 , z ∈ Γβ→β∗ .

To match the desired jump conditions of F(z) it therefore only remains to choose s = iM∆. Finally,
using (2.128), we can normalize at infinity by multiplication on the left by a suitable constant
diagonal matrix to obtain

(2.156) F(z) =

 FD(z)
q+(z; z0, iM∆)
q+(∞; z0, iM∆)

−iFOD(z)
q−(z; z0,−iM∆)
q+(∞; z0, iM∆)

−iFOD(z)
q−(z; z0, iM∆)

q+(∞; z0,−iM∆)
FD(z)

q+(z; z0,−iM∆)
q+(∞; z0,−iM∆)

.

Going back to Ŏout(z) by a constant diagonal conjugation yields

(2.157) Ŏout(z) :=

 FD(z)
q+(z; z0, iM∆)
q+(∞; z0, iM∆)

e−iMϕFOD(z)
q−(z; z0,−iM∆)
q+(∞; z0, iM∆)

−eiMϕFOD(z)
q−(z; z0, iM∆)

q+(∞; z0,−iM∆)
FD(z)

q+(z; z0,−iM∆)
q+(∞; z0,−iM∆)

.

One can verify that this solution of Riemann-Hilbert Problem 4 is unique and therefore, like
O(z; χ, τ, M), T(z; χ, τ, M), and S(z; χ, τ, M), it has Schwarz symmetry of the form (2.5).

2.8. Inner parametrices. We define two conformal mappings, one on a neighborhood of each of
the points z = α, β as follows. First, note that h(z) is well defined at z = α and that h(α) = i + 1

2 ϕ.
At z = β, the sum and difference of boundary values of h(z) are well defined, and h+(β) +

h−(β) = 2i + ϕ while h+(β)− h−(β) = ∆, implying that h+(β) = i + 1
2 ϕ + 1

2 ∆. Let Dp, p = α, β

denote disks of radius δ > 0 fixed but sufficiently small centered at p.

• On Dα we define a conformal coordinate φα(z) := (2i(h(z)− h(α)))
2
3 by analytic continua-

tion of the positive 2
3 power from the arc emanating from z = α along which h(z)− h(α) is

negative imaginary, and within Dα we choose Γα∗→α to agree with that arc. We also choose
the image under φ = φα of Γα→β ∩ Dα to lie on the negative real axis, and that of Λ±

α→β ∩ Dα

to lie on the ray arg(φ) = ∓ 2
3 π.

• On Dβ we define a conformal coordinate φβ(z) := (2i(h+(z)− h+(β)))
2
3 by analytic con-

tinuation of the positive 2
3 power from the arc emanating from z = β along which h̃(z)−



42 DENIZ BILMAN AND PETER D. MILLER

h+(β) is negative imaginary, where h̃(z) denotes the analytic continuation of h+(z) from
Γβ→β∗ to Dβ \ Γα→β, and within Dβ we choose Γβ→β∗ to agree with that arc. We also choose
the image under φ = φβ of Γα→β ∩ Dβ to lie on the negative real axis, and that of Λ±

α→β ∩ Dβ

to lie on the ray arg(φ) = ± 2
3 π.

The two maps z 7→ φp(z) for p = α, β are conformal near z = p because these points are simple
roots of h′(z)2. If we define

(2.158) P(z) := O(z; χ, τ, M)e−
1
2 iMϕσ3 , z ∈ Dα

and

(2.159) P(z) := O(z; χ, τ, M)

e−
1
2 iM(ϕ+∆)σ3 iσ3 , z ∈ Dβ, Im(φβ(z)) > 0,

e−
1
2 iM(ϕ−∆)σ3 iσ3 , z ∈ Dβ, Im(φβ(z)) < 0,

then the jump conditions satisfied by P(z) in both disks can be approximated universally by the
same formulæ; namely we have

(2.160) P+(z) = P−(z)
(

I + O(e−4M)
)[1 e−ζ3/2

0 1

]
, arg(ζ) = 0,

(2.161) P+(z) = P−(z)
(

I + O(e−4M)
)[ 1 0

eζ3/2
1

]
, arg(ζ) = ±2π

3
,

and

(2.162) P+(z) = P−(z)

[
0 1
−1 0

]
, arg(−ζ) = 0.

Here ζ = M
2
3 φp(z) for z ∈ Dp, p = α, β, and to define the boundary values all rays are taken

with orientation in the direction of increasing real part of ζ (this matches the original orientation
within Dβ but reverses the orientation within Dα). The error terms are uniform for z ∈ Dp and
they vanish along the indicated ray in the limit ζ → 0. Defining a matrix function P̆out(z) for
z ∈ Dα (resp., for z ∈ Dβ) by an analogue of the formula (2.158) (resp., of the formula (2.159)) in
which O(z; χ, τ, M) is replaced with Ŏout(z), we see that P̆out(z) is analytic within Dp except along
the arc where φp(z) ≤ 0, and where P̆out(z) satisfies exactly the jump condition (2.162), and that
P̆out(z) blows up like a negative one-fourth power at z = p. Therefore, the matrix function

(2.163) Yp(z) := P̆out(z)V−1φp(z)−
1
4 σ3 , z ∈ Dp, V :=

1√
2

[
1 −i
−i 1

]
has a removable singularity along the arc φp(z) ≤ 0 and hence is analytic in Dp. Letting A(ζ)

denote the standard Airy parametrix analytic for Im(ζ) ̸= 0 except across the rays arg(ζ) = ± 2
3 π,

satisfying jump conditions given in (2.160)–(2.162) with the error terms neglected, and satisfying
the normalization condition

(2.164) A(ζ)V−1ζ−
1
4 σ3 = I +

[
O(ζ−3) O(ζ−1)

O(ζ−2) O(ζ−3)

]
, ζ → ∞,
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(i.e., A(ζ) is the unique solution of Riemann-Hilbert Problem 4 of [10], for instance — see [10,
Appendix B] for full details), we then define a parametrix for O(z; χ, τ, M) within Dp, p = α, β by
setting

(2.165) Ŏα(z) := Yα(z)M− 1
6 σ3 A(M

2
3 φα(z))e

1
2 iMϕσ3 , z ∈ Dα,

and

(2.166) Ŏβ(z) := Yβ(z)M− 1
6 σ3 A(M

2
3 φβ(z))

e
1
2 iM(ϕ+∆)σ3 i−σ3 , z ∈ Dβ, Im(φβ(z)) > 0,

e
1
2 iM(ϕ−∆)σ3 i−σ3 , z ∈ Dβ, Im(φβ(z)) < 0.

2.9. Global parametrix and error estimation. Let D∗
p denote the Schwarz reflection in the real

axis of the disk Dp, p = α, β. We define a global parametrix for O(z; χ, τ, M) by setting

(2.167) Ŏ(z) :=



Ŏα(z), z ∈ Dα,

Ŏβ(z), z ∈ Dβ,

σ2Ŏα(z∗)∗σ2, z ∈ D∗
α,

σ2Ŏβ(z∗)∗σ2, z ∈ D∗
β,

Ŏout(z), z ∈ C \ (Dα ∪ Dβ ∪ D∗
α ∪ D∗

β),

which globally satisfies Schwarz symmetry in the form (2.5). The corresponding error is defined as
E(z) := O(z; χ, τ, M)Ŏ(z)−1 wherever both factors make sense, and it also is Schwarz symmetric.
Since O(z; χ, τ, M) and Ŏ(z) satisfy the same jump conditions across the arcs Γα→β and Γβ∗→α∗

both within and exterior to the disks Dp and D∗
p for p = α, β, E(z) can be defined on these arcs

so as to be analytic there. On the parts of the arcs Γα∗→α, Γβ→β∗ , Λ±
α→β, and Λ±∗

α→β lying outside
of all four disks, Ŏ(z) = Ŏout(z) is analytic and bounded, and Im(h(z)) ∈ (−1 + ϵ, 1 − ϵ) holds
on these arcs for some ϵ > 0 independent of M. It follows that on these arcs the boundary values
of E(z) are related by E+(z) = E−(z)(I + O(e−Mϵ)) as M → +∞. On the arcs of Γα∗→α, Γβ→β∗ ,
Λ±

α→β, and Λ±∗
α→β within the four disks, both O(z; χ, τ, M) and Ŏ(z) have jump discontinuities.

Using (2.158)–(2.159), (2.160)–(2.161), and (2.165)–(2.166) one can check that on these arcs within
Dp, p = α, β, we have

(2.168) E+(z) = E−(z)Yp(z)M− 1
6 σ3 A(M

2
3 φp(z))

(
I + O(e−4M)

)
A(M

2
3 φp(z))−1M

1
6 σ3 Yp(z)−1.

But since the holomorphic factors Yp(z) have unit determinant and are bounded independent of
M in Dp, and since A(ζ) has unit determinant and satisfies A(ζ) = O(|ζ| 1

4 ) as ζ → ∞ according
to (2.164), it follows that E+(z) = E−(z)(I + O(M

2
3 e−4M)) holds uniformly on these arcs in Dα

and Dβ. By Schwarz reflection symmetry of E(z), the same holds in D∗
α and D∗

β. Finally, on
the boundaries of all four disks, taken with clockwise orientation, it follows from the definitions
(2.163), (2.165), and (2.166), and from the large-ζ asymptotic property of A(ζ) given in (2.164) that
E+(z) = E−(z)(I + O(M−1)) holds on these circles.

From these arguments, it follows that if the jump matrix for E(z) on its jump contour ΣE is
denoted by VE(z), so that E+(z) = E−(z)VE(z) for z any non-self-intersection point of ΣE (so that
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the boundary values are well-defined), then

(2.169) sup
z∈ΣE

∥VE(z)− I∥ = O(M−1), M → +∞.

Since E(z) is analytic for z ∈ C \ ΣE and E(z) → I as z → ∞, appealing to standard small-norm
theory for Riemann-Hilbert problems then shows that E−(⋄)− I = O(M−1) holds in the L2(ΣE)

sense, and therefore also that

lim
z→∞

zE12(z) = − 1
2πi

∫
ΣE

E−,11(ζ)VE
12(ζ) dζ − 1

2πi

∫
ΣE

E−,12(ζ)(VE
22(ζ)− 1) dζ

= − 1
2πi

∫
ΣE

VE
12(ζ) dζ − 1

2πi

∫
ΣE

(E−,11(ζ)− 1)VE
12(ζ) dζ

− 1
2πi

∫
ΣE

E−,12(ζ)(VE
22(ζ)− 1) dζ

= O(M−1), M → +∞,

(2.170)

where we used the Cauchy-Schwarz inequality and the fact that (2.169) implies that also VE(⋄)−
I = O(M−1) in L2(ΣE) because ΣE is compact.

Recalling (2.116) and using the fact that O12(z; χ, τ, M) = E11(z)Ŏ12(z) + E12(z)Ŏ22(z) and that
Ŏ(z) = Ŏout(z) holds for |z| sufficiently large, we appeal to (2.170) and the limits E11(z) → 1 and
Ŏout

22 (z) → 1 as z → ∞ to obtain

MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) = 2i lim
z→∞

z
[
E11(z)Ŏout

12 (z) + E12(z)Ŏout
22 (z)

]
= Ψ̆(χ, τ; M) + O(M−1), M → +∞,

(2.171)

where Ψ̆(χ, τ; M) is defined in terms of the outer parametrix by

(2.172) Ψ̆(χ, τ; M) := 2i lim
z→∞

zŎout
12 (z).

2.10. Properties of Ψ̆(χ, τ; M). In this section we obtain differential equations for Ψ̆(χ, τ; M) (Sec-
tion 2.10.1), estimate some of the coefficients in these equations (Section 2.10.2), use these results
to compute the L2-norm of Ψ̆(χ, τ; M) (Section 2.10.3), and derive the explicit formula (1.19) for
|Ψ̆(χ, τ; M)|2 (Section 2.10.4).

2.10.1. Lax equations. Consider the matrix

(2.173) L(z; χ, τ, M) := Ŏout(z)e−iM(h(z)+2z−1)σ3 .

Note that h(z) + 2z−1 is analytic for z ∈ C \ (Γα→β ∪ Γβ→β∗ ∪ Γβ∗→α∗) and satisfies h(z) + 2z−1 =

χz + τz2 +O(z−1) as z → ∞. Since h+(z) + h−(z) = 2i+ ϕ for z ∈ Γα→β, h+(z) + h−(z) = −2i+ ϕ

for z ∈ Γβ∗→α∗ , and h+(z)− h−(z) = ∆ for z ∈ Γβ→β∗ , it follows that L(z; χ, τ, M) is analytic for
z ∈ C \ (Γα→β ∪ Γβ∗→α∗) (one checks that L+(z; χ, τ, M) = L−(z; χ, τ, M) for z ∈ Γβ→β∗ and applies
Morera’s theorem to deduce analyticity on the interior of Γβ→β∗), and that the jump conditions on
Γα→β and Γβ∗→α∗ are independent of (χ, τ) ∈ R2:

(2.174) L+(z; χ, τ, M) = L−(z; χ, τ, M)

[
0 −e−2Me4iMz−1

e2Me−4iMz−1
0

]
, z ∈ Γα→β,
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and

(2.175) L+(z; χ, τ, M) = L−(z; χ, τ, M)

[
0 −e2Me4iMz−1

e−2Me−4iMz−1
0

]
, z ∈ Γβ∗→α∗ .

Also, since h(z) is bounded at the four points α, β, α∗, β∗, L(z; χ, τ, M) inherits from Ŏout(z) the
property that it has at worst negative one-fourth root singularities near each of these points. Fi-
nally, since g(z) = O(z−1) as z → ∞ and h(z) = ϑ(z; χ, τ) + g(z), from (1.11) it follows that

(2.176) L(z; χ, τ, M) =

(
I +

∞

∑
n=1

L[n](χ, τ; M)z−n

)
e−iM(χz+τz2)σ3

holds for |z| sufficiently large, where the series is convergent as well as asymptotic as z → ∞. One
can also check that L(z∗; χ, τ, M) = σ2L(z; χ, τ, M)∗σ2. Now, Ψ̆(χ, τ; M) defined by (2.172) can
also be represented in the form

(2.177) Ψ̆(χ, τ; M) = 2iL[1]
12 (χ, τ; M) = −2iL[1]

21 (χ, τ; M)∗,

where the second equality comes via the Schwarz symmetry of L(z; χ, τ, M). These properties of
L(z; χ, τ, M) show that

(2.178) X :=
∂L
∂χ

L−1 and T :=
∂L
∂τ

L−1

are analytic functions of z for z ∈ C \ {α, β, α∗, β∗} with asymptotic expansions

X = −iMzσ3 − iM[L[1], σ3] + O(z−1)

T = −iMz2σ3 − iMz[L[1], σ3]− iM([L[2], σ3]− [L[1], σ3L[1]]) + O(z−1)
(2.179)

as z → ∞. If α, β, α∗, β∗ were independent of (χ, τ), then X and T would be entire and hence by
Liouville’s Theorem they would be polynomials in z. However the dependence of these quantities
on (χ, τ) via the Whitham equations (2.55) implies that X and T have simple poles at all four
branch points, so for certain residue matrices X(p) and T(p) depending on (χ, τ; M) we can write

X = −iMzσ3 − iM[L[1], σ3] + ∑
p=α,β,α∗,β∗

X(p)

z − p

T = −iMz2σ3 − iMz[L[1], σ3]− iM([L[2], σ3]− [L[1], σ3L[1]]) + ∑
p=α,β,α∗,β∗

T(p)

z − p
.

(2.180)

To determine the residues, note that for z in a neighborhood of Γα→β we may express L(z; χ, τ, M)

in the form

(2.181) L(z; χ, τ, M) = Y(z; χ, τ, M)

(
z − α

z − β

)− 1
4 σ3 1√

2

[
1 ie−2Me4iMz−1

ie2Me−4iMz−1
1

]
,

where Y(z; χ, τ, M) is analytic for z in a neighborhood of Γα→β and where the power function is
cut on Γα→β and tends to 1 as z → ∞. Now, α(χ, τ), β(χ, τ), and Y(z; χ, τ, M) are differentiable
with respect to (χ, τ) on the region χ > χc(τ), and in particular derivatives of Y(z; χ, τ, M) with
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respect to (χ, τ) are analytic in z near Γα→β as well. It then follows from (2.178) that

X(α) =
1
4

∂α

∂χ
(χ, τ)Y(α; χ, τ, M)σ3Y(α; χ, τ, M)−1

T(α) =
1
4

∂α

∂τ
(χ, τ)Y(α; χ, τ, M)σ3Y(α; χ, τ, M)−1

X(β) = −1
4

∂β

∂χ
(χ, τ)Y(β; χ, τ, M)σ3Y(β; χ, τ, M)−1

T(β) = −1
4

∂β

∂τ
(χ, τ)Y(β; χ, τ, M)σ3Y(β; χ, τ, M)−1,

(2.182)

and by Schwarz symmetry (i.e., from Ŏout(z∗)∗ = σ2Ŏout(z)σ2) we have X(p∗) = σ2X(p)∗σ2 and
T(p∗) = σ2T(p)∗σ2 for p = α, β. With X and T determined from L in this way, rearranging the
definitions (2.178) yields a Lax pair of differential equations for which L is a fundamental (as
det(L) = 1) solution matrix:

(2.183)
∂L
∂χ

= XL and
∂L
∂τ

= TL,

and hence the zero-curvature condition

(2.184)
∂X
∂τ

− ∂T
∂χ

+ [X, T] = 0

holds. If α, β, α∗, β∗ are fixed, then the pole contributions vanish from X and T, and (2.184) becomes
equivalent to the scaled focusing nonlinear Schrödinger equation (1.20) on q = Ψ̆(χ, τ; M). Since
these points are not fixed, Ψ̆(χ, τ; M) satisfies instead more complicated equations, one of which
we use in Section 2.10.3 below to calculate the L2-norm.

Combining (2.173) and (2.181) allows the residues to be expressed directly in terms of Ŏout(z)
and h(z), although since Ŏout(z) is undefined at the branch points, the evaluations at z = α, β

must be replaced by limits:

(2.185) X(α) =
1
4

∂α

∂χ
(χ, τ) lim

z→α
N(z; χ, τ, M), X(β) = −1

4
∂β

∂χ
(χ, τ) lim

z→β
N(z; χ, τ, M),

and similarly for T(α,β), wherein

N(z; χ, τ, M) : = Y(z; χ, τ, M)σ3Y(z; χ, τ, M)−1

= Ŏout(z)

[
0 ie−2M−2iMh(z)

−ie2M+2iMh(z) 0

]
Ŏout(z)−1.

(2.186)

Although it must be true from the first formula for N(z; χ, τ, M) in terms of Y(z; χ, τ, M), which
has unit determinant and is analytic near Γα→β, one can directly confirm from the second formula
that N(z; χ, τ, M) has no jump across either Γα→β or Γβ→β∗ . Now notice that, since h(α) = i + 1

2 ϕ

is well-defined and h′(z) = O((z − α)
1
2 ) as z → α, reality of ϕ = ϕ(χ, τ) yields e±(2M+2iMh(z)) =

e±iMϕ + O((z − α)
3
2 ). Then, since Ŏout(z) has unit determinant and satisfies Ŏout(z) = O((z −

α)−
1
4 ) as z → α, we get N(z; χ, τ, M) = Ñ(α)(z; χ, τ, M) + O(z − α), where

(2.187) Ñ(α)(z; χ, τ, M) := Ŏout(z)

[
0 ie−iMϕ

−ieiMϕ 0

]
Ŏout(z)−1.
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One can check directly that Ñ(α)(z; χ, τ, M) is analytic for z in a neighborhood of α. Hence in the
expression for X(α) in (2.185), N(z; χ, τ, M) can be replaced with Ñ(α)(z; χ, τ, M). Similarly, using
the fact that the boundary values taken by h(z) at z = β on Γα→β ∪ Γβ→β∗ are h±(β) = i+ 1

2 ϕ ± 1
2 ∆,

we get N(z; χ, τ, M) = Ñ(β)(z; χ, τ, M) + O(z − β) as z → β, where

(2.188) Ñ(β)(z; χ, τ, M) := Ŏout(z)

[
0 ie−iMϕ∓iM∆

−ieiMϕ±iM∆ 0

]
Ŏout(z)−1,

where the top/bottom sign indicates that z lies on the left/right side of Γα→β ∪ Γβ→β∗ near z = β.
One can also check that Ñ(β)(z; χ, τ, M) extends to Γα→β ∪ Γβ→β∗ as an analytic function of z near
z = β. In the expression for X(β) in (2.185), N(z; χ, τ, M) can then be replaced with Ñ(β)(z; χ, τ, M)

provided the limit z → β is taken from the correct side of the jump contour corresponding to the
top/bottom sign.

2.10.2. Estimates of the coefficients. In Section 2.10.3 below we will need information about the (op-
posite) diagonal elements of the matrices X(α) and X(β), and in particular we need to estimate Ñ(p)

22

for p = α, β. In the notation of Section 2.7, we have

(2.189) Ñ(α)
22 (z; χ, τ, M) =

iFD(z)FOD(z)
q+(∞; z0,−iM∆)q+(∞; z0, iM∆)

·
(
q+(z; z0,−iM∆)q−(z; z0,−iM∆)− q+(z; z0, iM∆)q−(z; z0, iM∆)

)
and

(2.190) Ñ(β)
22 (z; χ, τ, M) =

iFD(z)FOD(z)
q+(∞; z0,−iM∆)q+(∞; z0, iM∆)

·
(

e±iM∆q+(z; z0,−iM∆)q−(z; z0,−iM∆)− e∓iM∆q+(z; z0, iM∆)q−(z; z0, iM∆)
)

,

where again the top/bottom sign indicates that z lies on the left/right of the jump contour Γα→β ∪
Γβ→β∗ near z = β. The common z-independent denominator can be simplified using (2.143) with
n1 = −1 and n2 = 1 and (2.146) in (2.147):

(2.191) q+(∞; z0,−iM∆)q+(∞; z0, iM∆) =
Θ(H + iM∆; H)Θ(H − iM∆; H)

Θ(H; H)2 =
Θ(iM∆; H)2

Θ(0; H)2 ,

where in the second equality we used the identities (2.145). To evaluate (2.189) in the limit z → α,
we may first use (2.125) to obtain

(2.192) lim
z→α

R(z) · iFD(z)FOD(z) =
1
4
(α − α∗)(β − α).

Next, using A(α) = 0 in (2.147) and Taylor expansion about z = α gives

(2.193) q+(z; z0,−iM∆)q−(z; z0,−iM∆)− q+(z; z0, iM∆)q−(z; z0, iM∆)

= 2
Θ(xα − iM∆; H)Θ′(xα + iM∆; H)− Θ′(xα − iM∆; H)Θ(xα + iM∆; H)

Θ(xα; H)2 A(z) + O(A(z)3)
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as z → α, where xα := A(z0) +K and the first identity in (2.145) was also used. From (2.139) we
then obtain

(2.194) lim
z→α

A(z)
R(z)

=
πi
IA

lim
z→α

d
dz

(∫ z

α

dz′

R(z′)

)2

=
4πi

IA(α − α∗)(α − β)(α − β∗)
.

Therefore, combining (2.192), (2.193), and (2.194) shows that if xα := A(z0) +K, then

(2.195) lim
z→α

Ñ(α)
22 (z; χ, τ, M) = − 2πiΘ(0; H)2

IA(α − β∗)Θ(iM∆; H)2

· Θ(xα − iM∆; H)Θ′(xα + iM∆; H)− Θ′(xα − iM∆; H)Θ(xα + iM∆; H)

Θ(xα; H)2 .

Likewise, to evaluate (2.190) in the limit z → β, we start from the analogue of (2.192):

(2.196) lim
z→β

R(z) · iFD(z)FOD(z) =
1
4
(β − β∗)(β − α).

Next, from (2.138) and (2.139) we find that A±(β) = ± 1
2 H, where the subscript denotes taking a

limit from the left (+) or right (−) side of Γα→β ∪ Γβ→β∗ . Since we know that Ñ(β)
22 (z; χ, τ, M) is

analytic in z at z = β, without loss of generality we may agree to take the limit z → β in (2.190)
from the left side, taking the top sign therein. Hence, using (2.147) and Taylor expansion about
z = β recalling the automorphic identities (2.145),

(2.197) eiM∆q+(z; z0,−iM∆)q−(z; z0,−iM∆)− e−iM∆q+(z; z0, iM∆)q−(z; z0, iM∆)

= 2
Θ′(x̃β + iM∆; H)Θ(x̃β − iM∆; H)− Θ′(x̃β − iM∆; H)Θ(x̃β + iM∆; H)

Θ(x̃β; H)2 (A(z)− A(β))

+ O((A(z)− A(β))3),

as z → β, where x̃β := A(z0) +K+ 1
2 H. By the third identity in (2.145), the same formula holds if

x̃β is replaced with xβ := x̃β − H = A(z0) +K− 1
2 H. Then again taking the limit from the left,

(2.198) lim
z→β

A(z)− A(β)

R(z)
=

πi
IA

d
dz

(∫ z

β

dz′

R(z′)

)2

=
4πi

IA(β − α)(β − α∗)(β − β∗)
.

Combining these results then shows that if xβ := A(z0) +K− 1
2 H, then

(2.199) lim
z→β

Ñ(β)
22 (z; χ, τ, M) =

2πiΘ(0; H)2

IA(β − α∗)Θ(iM∆; H)2

·
Θ′(xβ + iM∆; H)Θ(xβ − iM∆; H)− Θ′(xβ − iM∆; H)Θ(xβ + iM∆; H)

Θ(xβ; H)2 .

We notice that the denominators in (2.195) and (2.199) involve related products (α − β∗)IA and
(β − α∗)IA, where IA was defined in (2.129). Since IA is positive imaginary, these are related by
complex conjugation. Moreover, recalling (2.138), we have the following result:

Lemma 2.6. In the limit χ ↓ χc(τ), we have H ↑ 0 and

(2.200)
1

(α − β∗)IA
=

[
1

(β − α∗)IA

]∗
= O(H),
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while in the limit χ ↑ +∞ we have H ↓ −∞ and

(2.201)
1

(α − β∗)IA
=

[
1

(β − α∗)IA

]∗
= O(1).

Proof. For the limit as χ ↓ χc(τ), we note that IB has a finite strictly negative real limit, while
α − β∗ → ξ − ξ∗ = 2iIm(ξ) ̸= 0. Therefore multiplying by 1 = IB/IB and using (2.138) (which
also shows that H ↑ 0 in the limit because IA blows up logarithmically in |β − α| as in the proof of
Lemma 2.5) proves (2.200).

For the limit as χ ↑ +∞, we recall that α and β both tend to zero in this limit, and in fact
χ

1
2 α → −

√
2 while χ

1
2 β →

√
2. In particular, α− β∗ = 2

√
2χ− 1

2 (1+ o(1)). By the scaling z = χ− 1
2 w

in the definition (2.129), one then also sees that χ− 1
2 IA has a finite nonzero limit while χ− 1

2 IB blows
up as χ ↑ +∞ (and hence H ↓ −∞). Again, see the proof of Lemma 2.5 for further details. This
proves (2.201). □

Since z0 ∈ R, it is not difficult to show that Im(A(z0)) = − 1
2 π, which in view of (2.146) and

H < 0 implies that xα and xβ are both real. Also, since to compute Re(A(z0)) from (2.139) we
may integrate R(z)−1 between two points on the real line, the corresponding integral is bounded
in absolute value by |IB |, so using (2.138) we see that |Re(A(z0))| ≤ −H > 0. Hence using (2.146)
shows that 3

2 H ≤ xα ≤ − 1
2 H and H ≤ xβ ≤ −H. Using this information, we now wish to estimate,

for x = xα, xβ ∈ R, y = M∆ ∈ R, and H < 0:

(2.202) T(H) := sup
3
2 H≤x≤− 3

2 H
y∈R

∣∣∣∣ Θ(0; H)2

Θ(iy; H)2
Θ′(x + iy; H)Θ(x − iy; H)− Θ′(x − iy; H)Θ(x + iy; H)

Θ(x; H)2

∣∣∣∣
Lemma 2.7. T(H) is a continuous function of H < 0 that satisfies

(2.203) T(H) = O(1), H ↓ −∞

and

(2.204) T(H) = O(H−1), H ↑ 0.

Proof. We give a proof in Appendix A. □

Combining Lemma 2.6 and Lemma 2.7 we obtain the following result:

Proposition 2.8. For each τ ∈ R, limz→α Ñ(α)
22 (z; χ, τ, M) and limz→β Ñ(β)

22 (z; χ, τ, M) are bounded
uniformly with respect to M > 0 and χ > χc(τ).

Proof. It only remains to explain that the bounds on x in the definition of T(H) are sufficient to
guarantee that 3

2 H ≤ xα ≤ − 1
2 H and H ≤ xβ ≤ −H as needed for consistency with the value of

A(z0). □

In Section 2.10.3 below we will also need to estimate the quantity Ŏ[1]
22 (χ, τ; M) defined by

(2.205) Ŏ[1]
22 (χ, τ; M) := lim

z→∞
z
(
Ŏout

22 (z)− 1
)
.
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Since FD(z) = 1 + O(z−2) as z → ∞, and since using R(z) = z2 + O(z) in the same limit gives

(2.206) A(z)− A(∞) =
2πi
IA

∫ z

∞

dz′

R(z′)
= −2πi

IA
1
z
+ O(z−2), z → ∞,

combining (2.147) with (2.157) gives

(2.207) Ŏ[1]
22 (χ, τ; M) =

2πi
IA

[
Θ′(A(∞) + A(z0) +K; H)

Θ(A(∞) + A(z0) +K; H)
− Θ′(A(∞) + A(z0) +K+ iM∆; H)

Θ(A(∞) + A(z0) +K+ iM∆; H)

]
.

Using A(∞) + A(z0) =
1
2 H − iπ together with (2.146), and applying the first and third identities

in (2.145) we arrive at

(2.208) Ŏ[1]
22 (χ, τ; M) = −2πi

IA
Θ′(iM∆; H)

Θ(iM∆; H)
.

We then have the following:

Proposition 2.9. For each τ ∈ R, Ŏ[1]
22 (χ, τ; M) is bounded uniformly with respect to M > 0 and χ >

χc(τ).

Proof. Since the denominator is nonzero for each χ > χc(τ) and the expression (2.208) is 2π-
periodic in y := M∆ ∈ R, it suffices to examine it as a function of y ∈ [−π, π] and determine its
behavior in the limits χ ↓ χc(τ) and χ ↑ +∞.

As in the proof of Lemma 2.6, one sees that H ↑ 0 and I−1
A = O(H) as χ ↓ χc(τ), while H ↓ −∞

and I−1
A → 0 proportional to χ− 1

2 as χ ↑ +∞. Then, as in the proof of Lemma 2.7, one checks using
dominated convergence applied to (2.144) that Θ′(iy; H)/Θ(iy; H) → 0 as H ↓ −∞ uniformly for
y ∈ R, and that (A.24) implies in particular that Θ′(iy; H)/Θ(iy; H) = O(H−1) as H ↑ 0 uniformly
for y ∈ R. □

2.10.3. L2-norm. A consequence of the expansion (2.176) and the Lax equations (2.183) is the pair
of identities

∂L[1]
11

∂χ
(χ, τ; M)− 2iML[1]

12 (χ, τ; M)L[1]
21 (χ, τ; M) = X[−1]

11 (χ, τ; M)

∂L[1]
22

∂χ
(χ, τ; M) + 2iML[1]

21 (χ, τ; M)L[1]
12 (χ, τ; M) = X[−1]

22 (χ, τ; M),

(2.209)

where X[−1](χ, τ; M) denotes the coefficient of z−1 in the Laurent expansion of X as z → ∞. From
(2.180) we see that

(2.210) X[−1](χ, τ; M) = X(α) + X(β) + X(α∗) + X(β∗) = X(α) + X(β) + σ2X(α)∗σ2 + σ2X(β)∗σ2.

Using (2.177) and the fact that the traces of L[1] and of the four residue matrices vanish, we deduce
the two equivalent formulæ

|Ψ̆(χ, τ; M)|2 =
2i
M

[
∂L[1]

11
∂χ

(χ, τ; M)− 2iIm(X(α)
11 + X(β)

11 )

]

= − 2i
M

[
∂L[1]

22
∂χ

(χ, τ; M)− 2iIm(X(α)
22 + X(β)

22 )

]
.

(2.211)
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Now combining (1.11), (2.17), (2.173), and (2.176) shows that

L[1](χ, τ; M) = lim
z→∞

z
(

L(z; χ, τ, M)eiM(χz+τz2)σ3 − I
)

= lim
z→∞

z
(

Ŏout(z)e−iMg(z)σ3 − I
)

= lim
z→∞

z
((

I + z−1Ŏ[1](χ, τ; M) + O(z−2)
)(

I − iMg1(χ, τ)z−1σ3 + O(z−2)
)
− I
)

= Ŏ[1](χ, τ; M)− iMg1(χ, τ)σ3,

(2.212)

where Ŏ[1](χ, τ; M) is the coefficient of z−1 in the Laurent expansion of Ŏout(z) as z → ∞, and

(2.213) g1(χ, τ) := lim
z→∞

zg(z)

which is well defined because g is analytic for large z and g(z) → 0 as z → ∞. Integrating (2.211)
in χ from χc(τ) to +∞ for fixed τ therefore gives

(2.214)∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 2g1(+∞, τ)− 2g1(χc(τ), τ)− 2i

M

(
Ŏ[1]

22 (+∞, τ; M)− Ŏ[1]
22 (χc(τ), τ; M)

)
− 4

M

∫ +∞

χc(τ)
Im(X(α)

22 + X(β)
22 ) dχ.

Here, the terms on the first line of the right-hand side are understood to refer to the limits χ ↓ χc(τ)

and χ ↑ +∞.
First, we apply Proposition 2.9 and obtain in the limit M → ∞,

(2.215)∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 2g1(+∞, τ)− 2g1(χc(τ), τ)− 4

M

∫ +∞

χc(τ)
Im(X(α)

22 + X(β)
22 ) dχ + O(M−1).

Next, we use (2.185) and N(z; χ, τ, M) = Ñ(α)(z; χ, τ, M) +O(z− α) = Ñ(β)(z; χ, τ, M) +O(z− β)

and apply Proposition 2.8 to get

(2.216)
∣∣∣∣∫ +∞

χc(τ)
Im(X(α)

22 + X(β)
22 ) dχ

∣∣∣∣ = O
(∫ +∞

χc(τ)

∣∣∣∣ ∂α

∂χ
(χ, τ)

∣∣∣∣ dχ +
∫ +∞

χc(τ)

∣∣∣∣ ∂β

∂χ
(χ, τ)

∣∣∣∣ dχ

)
, M → ∞.

From Lemma 2.5 it follows that the bound on the right-hand side of (2.216) is finite, and it is
independent of M. Consequently we obtain from (2.215) that

(2.217)
∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 2g1(+∞, τ)− 2g1(χc(τ), τ) + O(M−1), M → ∞.

To finish the calculation, we will compute g1(χ, τ), by first noting that

(2.218) g(z) = g1(χ, τ)z−1 + O(z−2) =⇒ g′(z) = −g1(χ, τ)z−2 + O(z−3), z → ∞.

Now combining (1.11), (2.17), and (2.25), we get

(2.219) g1(χ, τ) = − lim
z→∞

z2g′(z) = − lim
z→∞

z2
[

2τz + χ − τ2λ

z2 R(z)− (χ + 2τz + 2z−2)

]
,
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where we recall that R(z) = z2 + O(z) as z → ∞ and R(z)2 is given by (1.13). It follows that also
(2.220)

R(z) = z2 +
1
2

τλz+
1
4
(τ2λ− χ)λ+

(8 + (τ2λ − χ)2λ)(8 − (τ2λ − χ)2λ)

8(τ2λ − χ)3 τz−1 +O(z−2), z → ∞.

Using this in (2.219) gives the explicit (in terms of the solution λ = λ(χ, τ) of the integral condition
f (λ; χ, τ) = 0) formula

(2.221) g1(χ, τ) =
(2(τ2λ − χ)3 + χ(τ2λ − χ)2 − 8τ2)(8 + (τ2λ − χ)2λ)

4(τ2λ − χ)3 .

For the limit χ ↓ χc(τ), we the parametrization of (χ, τ) by (2.15) and of λ by (2.16) to get

(2.222) g1(χc(τ), τ) = lim
χ↓χc(τ)

g1(χ, τ) = 0.

To calculate g1(χ, τ) in the limit χ → +∞ we use instead the representation λ = 2(4− δ2)χ−2 with
δ2 = O(χ− 1

2 ) according to (2.69) in the proof of Lemma 2.5. Substituting into (2.221) then gives

(2.223) g1(+∞, τ) = lim
χ→+∞

g1(χ, τ) = 4.

Therefore, we have shown that
(2.224)∫ +∞

χc(τ)
|Ψ̆(χ, τ; M)|2 dχ = 2g1(+∞, τ)− 2g1(χc(τ), τ) + O(M−1) = 8 + O(M−1), M → +∞.

This completes the proof of (1.21) in Theorem 1.4.

Remark 2.10. This approach would appear to be an alternative to the more direct one based on
integration of the formula for |Ψ̆(χ, τ; M)|2 given in (1.19). Noting that the dependence on M
in (1.19) enters through the argument of the Jacobi elliptic function sn2(⋄; m) which is rapidly
varying for large M, one could perhaps pass to the limit M → +∞ by replacing it with its period
average, which is ⟨sn2(⋄; m)⟩ = (K(m)− E(m))/(mK(m)). Then, to establish the same result it
would remain to prove that

(2.225)
∫ +∞

χc(τ)

[
(Im(α(χ, τ)) + Im(β(χ, τ)))2

−4Im(α(χ, τ))Im(β(χ, τ))
K(m1(χ, τ))− E(m1(χ, τ))

m1(χ, τ)K(m1(χ, τ))

]
dχ = 8

where m1(χ, τ) is defined in terms of α and β by (1.17), given the rather implicit characterization
of α and β as functions of (χ, τ). In fact, we may regard the above arguments as an indirect proof
of this identity.

2.10.4. Explicit formulæ. Using the definition of the outer parametrix obtained in Section 2.7, we
have

Ψ̆(χ, τ; M) = 2ie−iMϕ q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

lim
z→∞

zFOD(z)

= i(Im(β)− Im(α))e−iMϕ q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

(2.226)
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in which the final ratio is given explicitly by

(2.227)
q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

=
Θ(A(∞)− A(z0)−K+ iM∆; H)Θ(A(∞) + A(z0) +K; H)

Θ(A(∞)− A(z0)−K; H)Θ(A(∞) + A(z0) +K− iM∆; H)
,

where z0 is defined by (2.126).
Our aim in this section is to express |Ψ̆(χ, τ; M)|2 explicitly in terms of Jacobi elliptic functions

with elliptic modulus m defined in Section 2.7. Note that the modulus m is the one most naturally
associated with the spectral curve underlying the outer parametrix Ŏout(z) via the integrals Ia
and Ib and the associated Abel mapping A(z). In order to achieve this goal, it is first necessary
to express the formula in (2.227) in terms of theta functions for the doubled parameter H0 := 2H
using the identity (see [22, Eqn. 20.7.14] and [22, Eqns. 20.2.10 and 20.2.12])

(2.228) Θ(w1; H)Θ(w2; H) = Θ(w1 + w2; 2H)Θ(w1 − w2; 2H)

+ e
1
2 Hew1 Θ(w1 + w2 + H; 2H)Θ(w1 − w2 + H; 2H).

Using this result as well as (2.146) and Θ(z + 2πi; ·) = Θ(z; ·), the numerator of (2.227) becomes

(2.229) Θ(A(∞)− A(z0)−K+ iM∆; H)Θ(A(∞) + A(z0) +K; H)

= Θ(2A(∞) + iM∆; 2H)Θ(−2A(z0)− H + iM∆; 2H)

− eA(∞)−A(z0)+iM∆Θ(2A(∞) + iM∆ + H; 2H)Θ(−2A(z0) + iM∆; 2H).

Likewise, the denominator of (2.227) becomes

(2.230) Θ(A(∞)− A(z0)−K; H)Θ(A(∞) + A(z0) +K− iM∆; H)

= Θ(2A(∞)− iM∆; 2H)Θ(−2A(z0)− H + iM∆; 2H)

− eA(∞)−A(z0)Θ(2A(∞)− iM∆ + H; 2H)Θ(−2A(z0) + iM∆; 2H).

According to (2.143) with n1 = −1 (mod 2) and n2 = 1 (mod 2), we may replace A(z0) with
−A(∞)− iπ + 1

2 H in the right-hand sides of (2.229)–(2.230) up to an ambiguity that cancels be-
tween the numerator and denominator due to the identities (2.145). Therefore, with the shorthand
w := 2A(∞) and Θ0(·) := Θ(·; 2H),

(2.231)
q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

=
Θ0(w + iM∆)Θ0(w + iM∆ − 2H) + ew+iM∆− 1

2 HΘ0(w + iM∆ + H)Θ0(w + iM∆ − H)

Θ0(w − iM∆)Θ0(w + iM∆ − 2H) + ew− 1
2 HΘ0(w − iM∆ + H)Θ0(w + iM∆ − H)

.

Then using (2.145) to shift arguments of four factors by −2H,

(2.232)
q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

=
Θ0(w + iM∆)2 + ew+iM∆+ 1

2 HΘ0(w + iM∆ + H)2

Θ0(w − iM∆)Θ0(w + iM∆) + ew+ 1
2 HΘ0(w − iM∆ + H)Θ0(w + iM∆ + H)

.
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Now observe that for w = 2A(∞) we have Im(w) = −iπ. Therefore because H is real, Θ0(w −
iM∆) = Θ0(w∗+ iM∆)∗ = Θ0(w+ 2πi+ iM∆)∗ = Θ0(w+ iM∆)∗. Similarly, Θ0(w− iM∆+ H) =

Θ0(w + iM∆ + H)∗. For the same reason, ew+ 1
2 H < 0. It follows that the denominator is real.

Therefore, the square modulus of the quantity in (2.232) is (squaring the denominator and mul-
tiplying the numerator by its complex conjugate Θ0(w − iM∆)2 − ew−iM∆+ 1

2 HΘ0(w − iM∆ + H)2)

(2.233)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2 =
1 + ew+iM∆+ 1

2 Hϕ2
+ + ew−iM∆+ 1

2 Hϕ2
− + e2w+Hϕ2

+ϕ2
−

1 + 2ew+ 1
2 Hϕ+ϕ− + e2w+Hϕ2

+ϕ2
−

where

(2.234) ϕ± :=
Θ0(w ± iM∆ + H)

Θ0(w ± iM∆)
.

Now, since the modular parameter in Θ0 is 2H = −2πK(1 − m)/K(m), the theta ratios ϕ± can be
expressed in terms of the Jacobi elliptic function sn(·; m) by the following identity:

(2.235)
Θ(W + H; 2H)

Θ(W; 2H)
= −e−

1
2 W Θ(−H; 2H)

Θ(0; 2H)
sn
(

K(m)

iπ
(W − iπ); m

)
.

Therefore, defining a constant σ > 0 by

(2.236) σ := e
1
2 H Θ(−H; 2H)2

Θ(0; 2H)2 ,

we have

(2.237)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2

=

(
1 + σsn2

(
K(m)

iπ
(w + iM∆ − iπ); m

))(
1 + σsn2

(
K(m)

iπ
(w − iM∆ − iπ); m

))
(

1 + σsn
(

K(m)

iπ
(w + iM∆ − iπ); m

)
sn
(

K(m)

iπ
(w − iM∆ − iπ); m

))2 .

Now we may write w = 2A(∞) = η − iπ with η ∈ R. Using the identity sn(u − 2K(m); m) =

−sn(u; m) gives

(2.238)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2

=

(
1 + σsn2

(
K(m)

iπ
(η + iM∆); m

))(
1 + σsn2

(
K(m)

iπ
(η − iM∆); m

))
(

1 + σsn
(

K(m)

iπ
(η + iM∆); m

)
sn
(

K(m)

iπ
(η − iM∆); m

))2 .

Combining the addition formula [22, Eqn. 22.8.1] with Jacobi’s imaginary transformation (see [22,
§22.6(iv)]), we have

(2.239) sn(−iu± v; m) =
−isc(u; 1 − m)cn(v; m)dn(v; m)± sn(v; m)nc(u; 1 − m)dc(u; 1 − m)

1 + msc2(u; 1 − m)sn2(v; m)
,
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and for real u, m and 0 < m < 1 the denominator is strictly positive. Using also the trigonometric
identities

cn2(v; m)dn2(v; m) = 1 − (1 + m)sn2(v; m) + msn4(v; m)

nc2(u; 1 − m)dc2(u; 1 − m) = 1 + (1 + m)sc2(u; 1 − m) + msc4(u; 1 − m),
(2.240)

we obtain

(2.241)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2 =
Asn4(v; m) + Bsn2(v; m) + C

(Dsn2(v; m) + E)2 ,

where

(2.242)

A := (−σ + msc2(u; 1 − m))2, C := (1 − σsc2(u; 1 − m))2,

B := 2mσsc4(u; 1 − m) + 2(m + 2σ + 2mσ + σ2)sc2(u; 1 − m) + 2σ,

D := −σ + msc2(u; 1 − m), E := 1 − σsc2(u; 1 − m)

and

(2.243) u :=
K(m)

π
η, η := Re(2A(∞)), v :=

K(m)

π
M∆.

Note that A = D2 and C = E2. Therefore, adding and subtracting 2DEsn2(v; m) in the numerator
gives

(2.244)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2 = 1 +
4σ(1 + sc2(u; 1 − m))(1 + msc2(u; 1 − m))sn2(v; m)

(Dsn2(v; m) + E)2 .

To further simplify, we can use [22, Eqn. 20.9.1] and (2.236) to obtain simply σ =
√

m. Thus,
D = −

√
mE, and hence

(2.245)∣∣∣∣q−(∞; z0,−iM∆)
q+(∞; z0, iM∆)

∣∣∣∣2 = 1 +
4
√

m(1 + sc2(u; 1 − m))(1 + msc2(u; 1 − m))

(1 −
√

msc2(u; 1 − m))2 · sn2(v; m)

(1 −
√

msn2(v; m))2 .

Using sc(u; 1 − m) = sn(u; 1 − m)/cn(u; 1 − m) and sn2(u; 1 − m) + cn2(u; 1 − m) = 1, this can be
rewritten as

(2.246)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2 = 1 +
4
√

m(1 − (1 − m)sn2(u; 1 − m))

(1 − (1 +
√

m)sn2(u; 1 − m))2 · sn2(v; m)

(1 −
√

msn2(v; m))2 .

To further simplify, observe that upon combining the definition of u and η given in (2.243)
with the definition of A(∞) given in (2.139) and using the same affine transformation w = (z −
x)/ρ and fractional linear mapping (2.132) used to simplify IA, one can write u in the form u =

U(i tan( 1
2 θα)), where

(2.247) U(ζ) := i
∫ ζ

0

dW√
1 − W2

√
1 − mW2

.

For evaluation at ζ = i tan( 1
2 θα) we can integrate along the positive imaginary axis taking the

positive square roots of 1 − W2 > 1 and 1 − mW2 > 1. More generally, U(ζ) admits analytic
continuation from the positive imaginary axis to the domain ζ ∈ C \ [−1/

√
m, 1/

√
m]. Even more

generally, we may take ζ on a sheet of the Riemann surface R of y2 = (1 − ζ2)(1 − mζ2) and
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admit arbitrary paths of integration on R in which case U(ζ) is a multi-valued function of ζ ∈ R
that is well-defined modulo integer linear combinations of the periods 4iK(m) and 2K(1 − m).
Since sn2(u; 1 − m) is doubly periodic in u with periods 2K(1 − m) (because sn(u; 1 − m) changes
sign upon u 7→ u+ 2K(1 − m)) and 2iK(m), it follows that upon composing u 7→ sn2(u; 1 − m)

with ζ 7→ u = U(ζ) one obtains a single-valued function on R, analytic except from isolated
singularities coming from the poles of sn2(u; 1 − m). In other words, ζ 7→ sn2(U(ζ); 1 − m) is a
meromorphic function on R for each m ∈ (0, 1).

In fact, the restriction of this composition to one sheet of R defined by the analytic continuation
of the integral formula (2.247) from positive imaginary ζ to the domain ζ ∈ C \ [−1/

√
m, 1/

√
m]

is meromorphic on the ζ-sphere and hence a rational function of ζ ∈ C. To see this, we let U±(ζ)

denote the boundary values on ζ ∈ R from the half planes C±. Then, since the integrand is
integrable at ζ = ∞, we have U+(ζ) = U−(ζ) for ζ < −1/

√
m and ζ > 1/

√
m. If instead

−1 < ζ < 1, then U+(ζ) is calculated directly using the formula (2.247) while to compute U−(ζ)

we have to integrate from W = i0 to W = ζ − i0 along a path in the domain C \ [−1/
√

m, 1/
√

m]

yielding the identity

(2.248) U+(ζ)− U−(ζ) = −2
∫ 1/

√
m

1

dW√
W2 − 1

√
1 − mW2

= −2K(1 − m), −1 < ζ < 1.

Therefore, if r(ζ) := sn2(U(ζ); 1 − m), then

r+(ζ) = sn2(U+(ζ); 1 − m) = sn2(U−(ζ)− 2K(1 − m); 1 − m)

= sn2(U−(ζ); 1 − m) = r−(ζ), ζ ∈ (−1, 1).
(2.249)

By similar calculations, one finds that

U+(ζ) + U−(ζ) = 2i
∫ 1

0

dW√
1 − W2

√
1 − mW2

+ 2
∫ 1/

√
m

1

dW√
W2 − 1

√
1 − mW2

= 2iK(m) + 2K(1 − m), 1 < ζ < 1/
√

m,
(2.250)

and therefore, using evenness of sn2(·; 1 − m),

r+(ζ) = sn2(U+(ζ); 1 − m) = sn2(−U−(ζ) + 2iK(m) + 2K(1 − m); 1 − m)

= sn2(−U−(ζ); 1 − m)

= sn2(U−(ζ); 1 − m) = r−(ζ), ζ ∈ (1, 1/
√

m).

(2.251)

Likewise,

(2.252) U+(ζ) + U−(ζ) = −2iK(m) + 2K(1 − m), −1/
√

m < ζ < −1

implying that

(2.253) r+(ζ) = r−(ζ), ζ ∈ (−1/
√

m,−1).

To fully characterize the rational function r(ζ) it remains to determine its partial fraction ex-
pansion. The poles of u 7→ sn2(u; 1 − m) are at the translations by lattice periods 2K(1 − m) and
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2iK(m) of the point u = iK(m), where we have the Laurent expansion

(2.254) sn2(u; 1 − m) =
1

1 − m
· 1
(u− iK(m))2 + O(1), u → iK(m).

The only points mapped by ζ 7→ u = U(ζ) to poles of sn2(u; 1 − m) are the points ζ = ±1. Since
r(−ζ) = r(ζ) it is enough to work out the Laurent expansion of r(ζ) near ζ = 1. Expanding U+(ζ)

for ζ < 1 with 1 − ζ small yields

(2.255) U+(ζ) = iK(m)− i

√
2

1 − m
·
√

1 − ζ + O(1 − ζ).

Therefore, since r(ζ) := sn2(U(ζ); 1 − m) is single-valued near ζ = 1,

(2.256) r(ζ) =
1

2(ζ − 1)
+ O(1), ζ → 1.

Since r(−ζ) = r(ζ), we then obtain the partial fraction expansion

(2.257) r(ζ) =
1

2(ζ − 1)
+

1
2(−ζ − 1)

+ C

for some constant C. Using the obvious identity r(0) = 0 then shows that C = 1. Consequently
the rational function at hand is exactly

(2.258) r(ζ) := sn2(U(ζ); 1 − m) =
ζ2

ζ2 − 1
.

(The result does not depend on the elliptic parameter 1−m.) Since the value of u defined in (2.243)
requires taking ζ = i tan( 1

2 θα), we have proved the identity

(2.259) sn2(u; 1 − m) =
tan2( 1

2 θα)

tan2( 1
2 θα) + 1

=
t2
α

1 + t2
α

,

where we have introduced the shorthand notation

(2.260) tα := tan( 1
2 θα) and tβ := tan( 1

2 θβ).

Using this result in (2.246) along with m = cot2( 1
2 θα) tan2( 1

2 θβ) = t−2
α t2

β gives

(2.261)
4
√

m(1 − (1 − m)sn2(u; 1 − m))

(1 − (1 +
√

m)sn2(u; 1 − m))2 =
4t−1

α tβ(1 + t2
α)(1 + t2

β)

(1 − tαtβ)2 .

Comparing with the trigonometric identity

(2.262)
4(1 −

√
m)2Im(α)Im(β)

(Im(α)− Im(β))2 =
4t−1

α tβ(1 + t2
α)(1 + t2

β)

(1 − tαtβ)2 ,

we can write (2.246) in the form

(2.263)
∣∣∣∣q−(∞; z0,−iM∆)

q+(∞; z0, iM∆)

∣∣∣∣2 = 1 +
4Im(α)Im(β)

(Im(α)− Im(β))2 · (1 −
√

m)2sn2(v; m)

(1 −
√

msn2(v; m))2 .

Going back to (2.226), we have shown that

(2.264) |Ψ̆(χ, τ; M)|2 = (Im(α)− Im(β))2 + 4Im(α)Im(β) · (1 −
√

m)2sn2(v; m)

(1 −
√

msn2(v; m))2 .
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Some calculus shows that as sn2(v; m) varies in [0, 1], so also

(2.265)
(1 −

√
m)2sn2(v; m)

(1 −
√

msn2(v; m))2 ∈ [0, 1], 0 < m < 1.

Therefore, as v varies for fixed (α, β),

(2.266) (Im(α)− Im(β))2 ≤ |Ψ̆(χ, τ; M)|2 ≤ (Im(α) + Im(β))2.

Actually, a simpler formula for |Ψ̆(χ, τ; M)|2 can be obtained via a Landen transformation in terms
of a less-natural elliptic parameter

(2.267) m1 :=
4
√

m
(1 +

√
m)2 =

4 cot( 1
2 θα) tan( 1

2 θβ)

(1 + cot( 1
2 θα) tan( 1

2 θβ))2
=

sin(θα) sin(θβ)

sin2( 1
2 (θα + θβ))

,

and variable

(2.268) v1 :=
K(m1)

π
(M∆ + π).

Note that, like m, m1 varies in [0, 1] from m1 = 1 at χ = χc(τ) (because there α = β = ξ with
Im(ξ) > 0) to m1 = 0 in the limit χ → +∞ (because θα → 0 while θβ → π). The simpler formula
for |Ψ̆(χ, τ; M)|2 reads

(2.269) |Ψ̆(χ, τ; M)|2 = (Im(α) + Im(β))2 − 4Im(α)Im(β)sn2(v1; m1),

which again obviously varies in the range indicated in (2.266). We provide an alternative deriva-
tion of this formula directly from (2.227) in Appendix B.

2.11. Proof of Corollary 1.5.

Proof. We compute

(2.270) ∥MΨ(M2⋄, M3τ; G(a, b))− e−i arg(ab)Ψ̆(⋄, τ; M)∥2
L2(R) = ∥MΨ(M2⋄, M3τ; G(a, b)∥2

L2(R)

+ ∥Ψ̆(⋄, τ; M)∥2
L2(R) − 2Re

(
e−i arg(ab)

∫
R

MΨ(M2χ, M3τ; G(a, b))∗Ψ̆(χ, τ; M) dχ

)
.

But, by Theorem 1.1 and (1.21), we can write this in the form

(2.271) ∥MΨ(M2⋄, M3τ; G(a, b))− e−i arg(ab)Ψ̆(⋄, τ; M)∥2
L2(R) =

2Re
(

e−i arg(ab)
∫

R

(
e−i arg(ab)Ψ̆(χ, τ; M)− MΨ(M2χ, M3τ; G(a, b))

)∗
Ψ̆(χ, τ; M) dχ

)
+ O(M−1).

Given δ > 0, there exists M1(δ) such that M > M1(δ) implies that the error term is less than 1
3 δ2.

Also, by (1.19), we have |Ψ̆(χ, τ; M)| ≤ Im(α(χ, τ)) + Im(β(χ, τ)) for χ > χc(τ), an upper bound
that is independent of M and that lies in L2(χc(τ),+∞) because α and β are continuous down to
χ = χc(τ) with common value ξ, and as shown in the proof of Lemma 2.5, Im(α(χ, τ)) = O(χ− 3

4 )
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and Im(β(χ, τ)) = O(χ− 3
4 ) as χ → +∞. Therefore, when M > M1(δ),

(2.272) ∥MΨ(M2⋄, M3τ; G(a, b))− e−i arg(ab)Ψ̆(⋄, τ; M)∥2
L2(R) ≤

2
∫ +∞

χc(τ)

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣(Im(α(χ, τ)) + Im(β(χ, τ))) dχ +

1
3

δ2.

Now let f (⋄, τ) ∈ C∞
0 (χc(τ),+∞) be a test function with compact support in χ > χc(τ). By the

Cauchy-Schwarz and Minkowski inequalities,

(2.273)

2
∫ +∞

χc(τ)

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣(Im(α(χ, τ)) + Im(β(χ, τ))) dχ ≤

2
∫

spt( f )

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣| f (χ, τ)| dχ

+ 2
(
∥MΨ(M2⋄, M3τ; G(a, b))∥L2(R) + ∥Ψ̆(⋄, τ; M)∥L2(χc(τ),+∞)

)
· ∥Im(α(⋄, τ)) + Im(β(⋄, τ))− f (⋄, τ)∥L2(χc(τ),+∞).

The quantity in parentheses is equal to 2
√

8 + O(M−1) according to Theorem 1.1 and (1.21). Fur-
thermore, by density, for each τ ∈ R, the test function f (χ, τ) can be chosen to approximate the
M-independent quantity Im(α(⋄, τ)) + Im(β(⋄, τ)) to arbitrary accuracy in L2(χc(τ),+∞). There-
fore, there exists some M2(δ) such that M > M2(δ) and suitable fδ(⋄, τ) ∈ C∞

0 (χc(τ),+∞) implies
that

(2.274)

2
∫ +∞

χc(τ)

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣(Im(α(χ, τ)) + Im(β(χ, τ))) dχ ≤

2
∫

spt( fδ)

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣| fδ(χ, τ)| dχ +

1
3

δ2.

Finally, using the locally-uniform convergence on compact subsets of χ > χc(τ) such as spt( fδ) af-
forded by Theorem 1.4 and the fact that as an element of C∞

0 (χc(τ),+∞), fδ(⋄, τ) ∈ L1(χc(τ),+∞)

with norm independent of M, there exists M3(δ) such that M > M3(δ) implies that

(2.275) 2
∫

spt( fδ)

∣∣∣MΨ(M2χ, M3τ; G(a, b))− e−i arg(ab)Ψ̆(χ, τ; M)
∣∣∣| fδ(χ, τ)| dχ ≤ 1

3
δ2.

Combining the results shows that M > max{M1(δ), M2(δ), M3(δ)} implies that

(2.276) ∥MΨ(M2⋄, M3τ; G(a, b))− e−i arg(ab)Ψ̆(⋄, τ; M)∥L2(R) ≤ δ,

so the proof is finished. □

3. ASYMPTOTIC BEHAVIOR OF Ψ(X, T; G(a, b)) IN THE LIMIT a → 0: THE CASE χ ≈ χc(τ)

In this section we reconsider Riemann-Hilbert Problem 3 in the limit M → +∞, treating the
case χ ≈ χc(τ) for given τ, i.e., we study the transition between the χ < χc(τ) and χ > χc(τ)

regimes. Recalling the jump matrix VS(z; χ, τ, M) from Riemann-Hilbert Problem 3 defined in
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(2.4), we are now interested in the case that the region of the z-plane on which the inequal-
ities −1 < Re(iϑ(z; χ, τ)) < 1 hold resembles the third pane in Figure 6. In this situation,
Re(iϑ(z; χ, τ)) ≈ −1 for z ≈ ξ(χ, τ), the complex critical point of z 7→ ϑ(z; χ, τ) in the upper
half-plane near which the contour Γ must pass. Therefore, when χ ≈ χc(τ) and z ≈ ξ(χ, τ),
the exponential factor e−2iM(ϑ(z;χ,τ)−i) in the (1, 2)-element of VS(z; χ, τ, M) fails to be negligible;
however the factor e2iM(ϑ(z;χ,τ)+i) present in the other off-diagonal element is then automatically
exponentially small near the same point z in the same situation, because Re(i(ϑ(z; χ, τ) + i) =

Re(i(ϑ(z; χ, τ)− i)− 2 ≈ −2 < 0.
For the remainder of this section we assume that the Jordan curve Γ passes over the complex-

conjugate critical points z = ξ, ξ∗ and study how to account for the fact that the (1, 2)-entry of the
jump matrix VS(z; χ, τ, M) may become large for z ≈ ξ(χ, τ) in Γ as χ increases beyond χc(τ).
To measure the size, recall the quantity d(χ, τ) defined in (1.24) so that 2Md(χ, τ) is the value of
the exponent in the (1, 2)-entry of (2.4) at the critical point z = ξ(χ, τ). Then, the boundary curve
χ = χc(τ) is defined by Re(2d(χ, τ)) = 0, and the region χ > χc(τ) corresponds to Re(2d(χ, τ)) >

0. We will show that it is possible to analyze Riemann-Hilbert Problem 3 in the limit M → +∞
without the use of any g-function provided that for some K± > 0, (χ, τ) lies in the region S defined
in (1.25). The constant K− > 0 in (1.25) should be taken sufficiently small to guarantee existence
of the complex critical points ξ, ξ∗, and we also assume (see Section 3.3) that K− < 2. To carry out
this analysis, we will build a suitable inner parametrix in a small disk Dξ of fixed sufficiently small
radius (see Section 3.3) centered at z = ξ, and deal with the neighborhood of z = ξ∗ using Schwarz
reflection symmetry (2.5). Since (1.25) implies that Re(2d(χ, τ)) → 0 as M → +∞ if (χ, τ) ∈ S
with Re(2d(χ, τ)) > 0, then such points (χ, τ) must tend to the boundary curve. Therefore, there
exists a constant c > 0 such that (χ, τ) ∈ S defined in (1.25) implies the uniform estimate (∥ ⋄ ∥
denotes an arbitrary norm on 2 × 2 matrices)

(3.1) sup
z∈Γ\Dξ∪D∗

ξ

∥∥∥VS(z; χ, τ, M)− I

∥∥∥ = O(e−cM), M → +∞,

but due to contributions from Γ ∩ (Dξ ∪ D∗
ξ ) we expect to obtain a new asymptotic description of

Ψ in this transitional regime.

3.1. Inner parametrices. Under the condition (χ, τ) ∈ S (see (1.25)) we cannot fully extend the
estimate (3.1) to z ∈ Γ ∩ Dξ , however we may write

(3.2) VS(z; χ, τ, M) = I +

[
O(e−cM) −e−2iM(ϑ(z;χ,τ)−i)

O(e−cM) O(e−cM)

]
, z ∈ Γ ∩ Dξ ,

where the error terms are uniform with respect to z ∈ Γ ∩ Dξ and (χ, τ) ∈ S . We do not further
estimate VS

12(z; χ, τ, M) because it may be large for z ∈ Γ ∩ Dξ under the condition (χ, τ) ∈ S , so
it should be retained and accounted for.

For z ∈ Dξ we write

(3.3) −2i(ϑ(z; χ, τ)− i) = 2d(χ, τ)− φ(z; χ, τ)2.
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This defines two opposite M-independent conformal maps φ(z) = φ(z; χ, τ) from Dξ to a neigh-
borhood of the origin φ = 0 since z = ξ(χ, τ) is a simple critical point of ϑ(z; χ, τ) and since d(χ, τ)

is defined by (1.24). Note that φ(ξ(χ, τ); χ, τ) = 0, and denoting η(χ, τ) := φ′(ξ(χ, τ); χ, τ), dif-
ferentiating (3.3) twice at z = ξ(χ, τ) gives

(3.4) η(χ, τ) := φ′(ξ(χ, τ); χ, τ) =⇒ η(χ, τ)2 = iϑ′′(ξ(χ, τ); χ, τ) ̸= 0.

We assume that the smooth oriented contour Γ passes over z = ξ in such a way that φ maps
Γ ∩ Dξ to a real interval containing φ = 0, and then we resolve the sign ambiguity by insisting
that z 7→ φ(z) is increasing along Γ∩ Dξ . This makes η a well-defined continuous complex-valued
function of (χ, τ). In the rescaled coordinate

(3.5) ζ := M
1
2 φ(z; χ, τ),

the jump matrix is expressed in the limit M → +∞ as

(3.6) VS(z; χ, τ, M) = eMd(χ,τ)σ3 iσ3

[
1 + O(e−cM) e−ζ2

O(e−cM MK+) 1 + O(e−cM)

]
i−σ3e−Md(χ,τ)σ3 , z ∈ Γ ∩ Dξ .

The condition z ∈ Γ ∩ Dξ implies that ζ lies in a large interval containing ζ = 0 with endpoints
proportional to M

1
2 . Neglecting the errors, we see that the central factor is the jump matrix for the

following Riemann-Hilbert problem due to Fokas, Its, and Kitaev [17] (see also [15, Section 3] for
a context more relevant to our work).

Riemann-Hilbert Problem 5 (Hermite polynomials). Given n ∈ Z≥0, find a 2 × 2 matrix valued
function H[n](ζ) with the following properties:

• Analyticity: H[n](ζ) is analytic for ζ ∈ C \ R, taking continuous boundary values on R.
• Jump conditions: The boundary values on the jump contour R oriented from ζ = −∞ to

ζ = +∞ are related as follows:

(3.7) H[n]
+ (ζ) = H[n]

− (ζ)

[
1 e−ζ2

0 1

]
, ζ ∈ R.

• Normalization: H[n](ζ)ζ−nσ3 = I + O(ζ−1) as ζ → ∞.

This Riemann-Hilbert problem has a unique solution given in terms of the Hermite polynomials
{Pn(ζ)}∞

n=0, which are determined by the following properties: Pn(ζ) is a polynomial of degree n
with a positive leading coefficient γn > 0 as defined in (1.27) and {Pn(ζ)}∞

n=0 are orthonormal
with respect to the measure e−ζ2

dζ, ζ ∈ R, that is,

(3.8)
∫ +∞

−∞
Pj(ζ)Pk(ζ)e−ζ2

dζ = δjk,

where δjk is the Kronecker delta. Let πn(ζ) := γ−1
n Pn(ζ) = ζn + · · · denote the monic Hermite

polynomial of degree n. Then with the convention that γ−1 = 0 the formula

(3.9) H[n](ζ) =

 πn(ζ)
1

2πi

∫
R

πn(s)e−s2
ds

s − ζ

−2πiγ2
n−1πn−1(ζ) −γ2

n−1

∫
R

πn−1(s)e−s2
ds

s − ζ

, n = 0, 1, 2, 3, . . . ,
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provides the solution of Riemann-Hilbert Problem 5. Moreover, det(H[n](ζ)) ≡ 1. See [14, Chapter
3] or [15, Theorem 3.1] for more details. The matrix H[n](ζ) also has the Laurent expansion

(3.10) H[n](ζ)ζ−nσ3 = I + H[n]
−1ζ−1 + H[n]

−2ζ−2 + O(ζ−3), ζ → ∞,

where

H[n]
−1 :=

 0
−1

2πiγ2
n

−2πiγ2
n−1 0

, n ∈ Z≥0.(3.11)

The coefficient H[n]
−2 in (3.10) is a diagonal matrix due to the property πn(−ζ) = (−1)nπn(ζ)

for n ∈ Z≥0, and in fact H[0]
−2 = 0, see [22, Table 18.6.1]. From this point on, we indicate the

dependence of various quantities on the chosen integer n via subscripts.
For a given value of n ∈ Z≥0 and holomorphic matrix-valued function Yn(z) both to be deter-

mined, we define an inner parametrix for z ∈ Dξ by

(3.12) S̆in
n (z; χ, τ, M) := Yn(z)M− 1

2 nσ3eMd(χ,τ)σ3 iσ3 H[n](M
1
2 φ(z; χ, τ))i−σ3e−Md(χ,τ)σ3 .

This is analytic for z ∈ Dξ \ Γ with jump matrix

(3.13) VS̆in
n (z; χ, τ, M) :=

[
1 −e2Md(χ,τ)−Mφ(z;χ,τ)2

0 1

]
, z ∈ Γ ∩ Dξ ,

which coincides with the matrix in (3.6) after neglecting the error terms.
A second inner parametrix for S(z; χ, τ, M) is then defined in the reflected disk D∗

ξ centered at
z = ξ∗ by Schwarz reflection, see (3.24) below. See [2], [12], and [13] for other other applications
of Riemann-Hilbert Problem 5 to the solution of nonlinear equations in transitional regimes.

3.2. Outer parametrix. Given n ∈ Z≥0, we need an outer parametrix defined for z ∈ C \ Dξ ∪ D∗
ξ

that matches with the ζnσ3 behavior of the local parametrices. Thanks to the estimate (3.1), the
outer parametrix need not satisfy any sort of nontrivial jump condition on Γ outside the disks
Dξ ∪ D∗

ξ . Therefore, the only flexibility we have for an outer parametrix is to allow it to have poles
in the disks. We introduce an M-independent outer parametrix by

(3.14) S̆out
n (z; χ, τ) :=

(
z − ξ(χ, τ)

z − ξ(χ, τ)∗

)nσ3

,

which satisfies the Schwarz symmetry S̆out
n (z; χ, τ) = σ2S̆out

n (z∗; χ, τ)∗σ2. Here, n ∈ Z≥0 has the
same value as in (3.12) — the degree of the Hermite polynomial. For z ∈ Dξ , the formula (3.14)
can be expressed as S̆out

n (z; χ, τ) = Yn(z)φ(z; χ, τ)nσ3 with

(3.15) Yn(z) := y(z; χ, τ)nσ3 , y(z; χ, τ) :=
z − ξ(χ, τ)

φ(z; χ, τ)(z − ξ(χ, τ)∗)
.

Note that z 7→ y(z; χ, τ) is analytic and nonvanishing for z ∈ Dξ . In particular z = ξ(χ, τ) is a
removable singularity:

(3.16) y(ξ(χ, τ); χ, τ) =
1

2i Im(ξ(χ, τ))η(χ, τ)
.
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This defines the holomorphic prefactor Yn(z) in (3.12). With this definition, the mismatch of the
inner and outer parametrices for z ∈ ∂Dξ can be written in the form

(3.17)

S̆in
n (z; χ, τ, M)S̆out

n (z; χ, τ)−1 = y(z; χ, τ)nσ3 iσ3 M− 1
2 nσ3eMd(χ,τ)σ3

· H[n](M
1
2 φ(z; χ, τ))

(
M

1
2 φ(z; χ, τ)

)−nσ3

· e−Md(χ,τ)σ3 M
1
2 nσ3 i−σ3 y(z; χ, τ)−nσ3 , z ∈ ∂Dξ .

Using (3.5) and (3.10), we obtain for z ∈ ∂Dξ (on which φ(z; χ, τ) is bounded away from zero) that

(3.18)

S̆in
n (z; χ, τ, M)S̆out

n (z; χ, τ)−1 = y(z; χ, τ)nσ3 iσ3 M− 1
2 nσ3eMd(χ,τ)σ3

·
(

I + O(M− 1
2 )
)

· e−Md(χ,τ)σ3 M
1
2 nσ3 i−σ3 y(z; χ, τ)−nσ3 , M → +∞.

To prevent the conjugating factors from contaminating the error term we now tie n to (χ, τ) to
ensure that |M− 1

2 neMd(χ,τ)| is as close as possible to 1. Since

(3.19) An(χ, τ; M) := M− 1
2 neMd(χ,τ) = eiM Im(d(χ,τ)) exp

(
ln(M)

1
2

(
Re(2d(χ, τ))

ln(M)M−1 − n
))

,

we assume that n = N(χ, τ; M), where

(3.20) N(χ, τ; M) :=
⌊

Re(2d(χ, τ))

ln(M)M−1

⌉
≥ 0, whenever

Re(2d(χ, τ))

ln(M)M−1 ≥ −1
2

,

where ⌊x⌉ denotes the integer closest to a real number x with the convention that ⌊n − 0.5⌉ = n.
We truncate the choice of n to 0 otherwise:

(3.21) N(χ, τ; M) := 0, whenever
Re(2d(χ, τ))

ln(M)M−1 < −1
2

.

Thus, the condition (χ, τ) ∈ S implies that n = N(χ, τ; M) lies in the finite range {0, 1, 2, . . . , ⌊K+⌉}.
With n related to (χ, τ) ∈ S , using (3.20) in (3.19) shows that An(χ, τ; M) satisfies the estimate

(3.22) M− 1
4 ≤ |An(χ, τ; M)| < M

1
4 , n = N(χ, τ; M) ∈ Z≥1.

In the case n = 0 (resulting from either (3.20) or from the truncation (3.21)), the lower bound in
(3.22) is replaced with an exponentially small quantity:

(3.23) e−K−M ≤ |A0(χ, τ; M)| < M
1
4 , N(χ, τ; M) = 0.

We finally define the global parametrix S̆(z; χ, τ, M) by

(3.24) S̆(z; χ, τ, M) :=


S̆in

n (z; χ, τ, M), z ∈ Dξ ,

σ2S̆in
n (z∗; χ, τ, M)∗σ2, z ∈ D∗

ξ ,

S̆out
n (z; χ, τ), z ∈ C \ Dξ ∪ D∗

ξ ,

wherein n = N(χ, τ; M) ∈ {0, 1, 2, . . . , ⌊K+⌉}.
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3.3. Initial error analysis. The accuracy of approximating S(z; χ, τ, M) with S̆(z; χ, τ, M) is mea-
sured by F(z; χ, τ, M)− I, where

(3.25) F(z; χ, τ, M) := S(z; χ, τ, M)S̆(z; χ, τ, M)−1, z ∈ C \ ΣF.

Here ΣF := Γ ∪ ∂Dξ ∪ ∂D∗
ξ , where the circles ∂Dξ and ∂D∗

ξ both have clockwise orientation.
Note that F(z; χ, τ, M) has a Schwarz-symmetric property analogous to (2.5) and is analytic in
its domain of definition C \ ΣF, and its boundary values on the jump contour ΣF are related by
F+(z; χ, τ, M) = F−(z; χ, τ, M)VF(z; χ, τ, M), where VF(z) = VF(z; χ, τ, M) is defined by
(3.26)

VF(z) :=


S̆out

n (z; χ, τ)VS(z; χ, τ, M)S̆out
n (z; χ, τ)−1, z ∈ Γ \ Dξ ∪ D∗

ξ ,

S̆in
n−(z; χ, τ, M)VS(z; χ, τ, M)VS̆in

n (z; χ, τ, M)−1S̆in
n−(z; χ, τ, M)−1, z ∈ Γ ∩ Dξ ,

S̆in
n (z; χ, τ, M)S̆out

n (z; χ, τ)−1, z ∈ ∂Dξ ,

where n = N(χ, τ; M) and the value of the jump matrix on Γ ∩ D∗
ξ and on ∂D∗

ξ follows by Schwarz
symmetry. Note also that F(z; χ, τ, M) → I as z → ∞.

Since for n = N(χ, τ; M) ∈ {0, 1, 2, . . . , ⌊K+⌉} the outer parametrix S̆out
n (z; χ, τ) is unimodular,

independent of M, and bounded on Γ \ Dξ ∪ D∗
ξ , using the estimate (3.1) in (3.26) implies that

(3.27) sup
z∈Γ\Dξ∪D∗

ξ

∥VF(z; χ, τ, M)− I∥ = O(e−cM), M → +∞,

for some constant c > 0.
To analyze VF(z; χ, τ, M)− I on the arc Γ ∩ Dξ , we begin by noting that the inner parametrix

S̆in
n (z; χ, τ, M) does not satisfy exactly the same jump conditions as S(z; χ, τ, M) on that arc. In-

deed, recalling (2.4) and using (3.3) and (3.13), we see that a more precise version of (3.2) is

(3.28) VS(z; χ, τ, M) = VS̆in
n (z; χ, τ, M) +

[
O(e−4M) 0

O(eM[φ(z;χ,τ)2−2d(χ,τ)−4]) O(e−4M)

]
, z ∈ Γ ∩ Dξ ,

in the limit M → +∞. Hence using (3.13) again,

(3.29) VS(z; χ, τ, M)VS̆in
n (z; χ, τ, M)−1

= I +

[
O(e−4M) O(eM[2d(χ,τ)−φ(z;χ,τ)2−4])

O(eM[φ(z;χ,τ)2−2d(χ,τ)−4]) O(e−4M)

]
, z ∈ Γ ∩ Dξ , M → +∞.

Thus, with (3.12) taking Yn(z) as in (3.15) and using (3.19), we find that with n = N(χ, τ; M),

(3.30)

VF(z; χ, τ, M)− I = y(z; χ, τ)nσ3 An(χ, τ; M)σ3 iσ3 H[n]
− (M

1
2 φ(z; χ, τ))i−σ3 An(χ, τ; M)−σ3

·
[

O(e−4M) O(An(χ, τ; M)2e−M[φ(z;χ,τ)2+4])

O(An(χ, τ; M)−2eM[φ(z;χ,τ)2−4]) O(e−4M)

]
· An(χ, τ; M)σ3 iσ3 H[n]

− (M
1
2 φ(z; χ, τ))−1i−σ3 An(χ, τ; M)−σ3 y(z; χ, τ)nσ3

for z ∈ Γ ∩ Dξ . Now, since H[n](ζ) = O(⟨ζ⟩n), H[n](M
1
2 φ(z; χ, τ)) = O(M

1
2 n) for z ∈ Dξ be-

cause φ(z; χ, τ) is bounded there. The estimates (3.22)–(3.23) on |An(χ, τ; M)| then show that the
matrix product on the first line of the right-hand side of (3.30) is O(M

1
2 (n+1)) (in the case n = 0,
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the exponential lower bound in (3.23) is harmless because H[0](ζ) is upper triangular). By uni-
modularity, the same estimate holds for the inverse matrix on the third line of the right-hand
side of (3.30). Because 0 < K− < 2, the central factor is uniformly O(e−Mδ) on Γ ∩ Dξ for some
δ > 0, provided that the M-independent radius of Dξ is sufficiently small. Indeed, this is ob-
vious for all but the 2, 1-entry because φ(z; χ, τ)2 ≥ 0 holds on the jump contour. Now, since
K− < 2, there exists δ > 0 such that 4 − 2K− − 2δ > 0, so using the exponential lower bound
for |A0(χ, τ; M)| from (3.23) shows that when maxz∈Γ∩Dξ

φ(z; χ, τ)2 ≤ 4 − 2K− − 2δ we have for
n = 0 that O(A0(χ, τ; M)−2eM[φ(z;χ,τ)2−4]) = O(e−2Mδ). Under the same condition for n > 0 we
have O(An(χ, τ; M)−2eM[φ(z;χ,τ)2−4]) = O(M

1
2 e−M[2K−+2δ]) = O(e−2Mδ). Since the conjugating

factors contribute O(Mn+1) = O(M⌊K+⌉+1) = O(eMδ), combining the results shows that

(3.31) sup
z∈Γ∩Dξ

∥VF(z; χ, τ, M)− I∥ = O(e−Mδ), M → +∞.

It now remains to estimate the jump matrix VF(z; χ, τ, M) on the disk boundaries ∂Dξ and ∂D∗
ξ .

For z ∈ ∂Dξ , we recall that φ(z; χ, τ) ̸= 0 and first use (3.10) and (3.19) in (3.18) to write

(3.32)

VF(z; χ, τ, M)− I = y(z; χ, τ)nσ3 An(χ, τ; M)σ3 iσ3

·
(

H[n]
−1

1

φ(z; χ, τ)M
1
2
+ H[n]

−2
1

φ(z; χ, τ)2M
+ O(M− 3

2 )

)
· i−σ3 An(χ, τ; M)−σ3 y(z; χ, τ)−nσ3 , z ∈ ∂Dξ , M → +∞,

where n = N(χ, τ; M). Next, incorporating the bounds (3.22)–(3.23) in the above expression and
recalling the definition (3.11) together with the facts that H[n]

−2 is a diagonal matrix, that the error
term is an upper-triangular matrix if n = N(χ, τ; M) = 0, and that y(z; χ, τ)nσ3 is bounded for
z ∈ ∂Dξ independently of M, we find that

(3.33)
VF(z; χ, τ, M)− I =

 0
y(z; χ, τ)2n An(χ, τ; M)2

2πiγ2
n

2πiγ2
n−1

y(z; χ, τ)2n An(χ, τ; M)2 0

 1

φ(z; χ, τ)M
1
2

+ O(M−1), z ∈ ∂Dξ , n = N(χ, τ; M), M → +∞.

Remark 3.1. This estimate shows that VF(z; χ, τ, M) − I fails to be small for z ∈ ∂Dξ whenever
|An(χ, τ; M)| approaches the endpoints of the range (3.22) (or the upper endpoint of the range
(3.23) for n = 0 — the exponentially small lower bound at the lower endpoint is irrelevant because
γn−1 = 0 by convention) and in this case F(z; χ, τ, M) does not satisfy a small-norm Riemann-
Hilbert problem in the limit as M → +∞. The same problem arises also on ∂D∗

ξ by symmetry.

In light of this observation, to be able to cover the whole range of (χ, τ) ∈ S defined in (1.25), it
is necessary to mitigate the difficulty by considering an explicitly solvable model Riemann-Hilbert
problem whose jump condition involves the components of VF(z; χ, τ, M)− I on ∂Dξ ∪ ∂D∗

ξ that
are not small. Put differently, we will now build a parametrix for F(z; χ, τ, M).
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3.4. A soliton parametrix for F(z; χ, τ, M). A closer inspection of (3.33) shows that the largest
terms are different depending on whether |An(χ, τ; M)| < 1 or |An(χ, τ; M)| ≥ 1. Indeed, if
n = N(χ, τ; M) ∈ {1, 2, . . . , ⌊K+⌉} and |An(χ, τ; M)| ≥ 1, or if n = N(χ, τ; M) = 0 without any
further condition on |A0(χ, τ; M)|, then

(3.34) VF(z; χ, τ, M) = I +

0
y(z; χ, τ)2n An(χ, τ; M)2

2πiγ2
n φ(z; χ, τ)M

1
2

0 0

+ O(M− 1
2 ), z ∈ ∂Dξ , M → +∞.

In the n = 0 case one gets an improvement of the error term to O(M−1) for the same reason no
condition on |A0(χ, τ; M)| is needed, namely that γ−1 = 0. On the other hand, if n = N(χ, τ; M) ∈
{1, 2, . . . , ⌊K+⌉} and |An(χ, τ; M)| < 1, then

(3.35) VF(z; χ, τ, M) = I +

 0 0
2πiγ2

n−1y(z; χ, τ)−2n

An(χ, τ; M)2φ(z; χ, τ)M
1
2

0

+ O(M− 1
2 ), z ∈ ∂Dξ , M → +∞.

In both (3.34) and (3.35), the error terms are in the L∞(∂Dξ) sense. We introduce the following
quantities in order to treat both cases simultaneously. Let

(3.36) L+
n (χ, τ; M) :=

An(χ, τ; M)2

2πiγ2
n M

1
2

, L−
n (χ, τ; M) :=

2πiγ2
n−1

An(χ, τ; M)2M
1
2

,

and define the 2-nilpotent matrices

(3.37) N+ :=

[
0 1
0 0

]
, N− :=

[
0 0
1 0

]
.

Also define s = S(χ, τ; M) to be the sign determined from χ, τ, M in the following way:

(3.38) S(χ, τ; M) :=

+, n ∈ {1, . . . , ⌊K+⌉} and |An(χ, τ; M)| ≥ 1, or n = 0

−, n ∈ {1, . . . , ⌊K+⌉} and |An(χ, τ; M)| < 1,

where n = N(χ, τ; M). Then (3.34) and (3.35) can be written in a common form as

(3.39) VF(z; χ, τ, M) = I + Ls
n(χ, τ; M)

y(z; χ, τ)s2n

φ(z; χ, τ)
Ns + O(M− 1

2 ), z ∈ ∂Dξ , M → +∞.

Neglecting the error terms in (3.34)–(3.35) leads to the following Riemann-Hilbert problem char-
acterizing a parametrix for F(z; χ, τ, M).

Riemann-Hilbert Problem 6 (Soliton parametrix). Given an arbitrary sign s = ± and a function p(z)
analytic on a punctured closed disk Dξ \ {ξ} with a simple pole at the center z = ξ, find a 2 × 2
matrix-valued function Ws(z; p) with the following properties:

Analyticity: Ws(z; p) is analytic for z ∈ C \
(

∂Dξ ∪ ∂D∗
ξ

)
, and it takes continuous bound-

ary values on the clockwise-oriented disk boundaries.
Jump conditions: The boundary values on the jump contour ∂Dξ ∪ ∂D∗

ξ are related by

(3.40) Ws
+(z; p) = Ws

−(z; p)VWs
(z; p), z ∈ ∂Dξ ∪ ∂D∗

ξ ,
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where

(3.41) VWs
(z; p) :=

I + p(z)Ns, z ∈ ∂Dξ ,

σ2(I + p(z∗)Ns)∗σ2, z ∈ ∂D∗
ξ .

Normalization: Ws(z; p) = I + O(z−1) as z → ∞.

Proposition 3.2. Riemann-Hilbert Problem 6 has a unique solution given by

(3.42) Ws(z; p) =

Rs(z; p)VWs
(z; p)−1, z ∈ Dξ ∪ Dξ∗ ,

Rs(z; p), z ∈ C \ Dξ ∪ Dξ∗ ,

where Rs(z; p) is the rational function

(3.43) Rs(z; p) := I +
Xs(p)
z − ξ

+
Zs(p)
z − ξ∗

.

Here
(3.44)

X−(p) :=
1

4 Im(ξ)2 + |C|2

[
2i Im(ξ)|C|2 0
4 Im(ξ)2C 0

]
, Z−(p) :=

1
4 Im(ξ)2 + |C|2

[
0 −4 Im(ξ)2C∗

0 −2i Im(ξ)|C|2

]
,

and
(3.45)

X+(p) :=
1

4 Im(ξ)2 + |C|2

[
0 4 Im(ξ)2C
0 2i Im(ξ)|C|2

]
, Z+(p) :=

1
4 Im(ξ)2 + |C|2

[
−2i Im(ξ)|C|2 0
−4 Im(ξ)2C∗ 0

]
,

where

(3.46) C := Res
z=ξ

p(z).

The first line of (3.42) has only removable singularities at z = ξ, ξ∗ and it extends as a function analytic in
Dξ ∪ D∗

ξ .

Remark 3.3. When the residue C has the form C0e−s2iM(ξχ+ξ2τ) for C0 ̸= 0, Riemann-Hilbert Prob-
lem 6 characterizes a fundamental solution matrix of the Zakharov-Shabat eigenvalue problem
with spectral parameter z and simple eigenvalue z = ξ ∈ C+ corresponding to the soliton solu-
tion of the focusing nonlinear Schrödinger equation in the form (1.20). This solution is a reflec-
tionless potential for which the only nontrivial scattering coefficient is a simple Blaschke factor
a(z) = (z − ξ)/(z − ξ∗). Actually, defining the scattering coefficient requires selecting a direction
s of normalization so that W → I as χ → −s∞, and it is well known that one may change the
direction of normalization by conjugating by the scattering matrix a(z)σ3 . Indeed, the solutions of
Riemann-Hilbert Problem 6 are explicitly related for opposite signs s and corresponding residues
C, C̃. To see this, it suffices to work outside of the two disks and consider the rational matrix
R+(z; p) where p has residue C at z = ξ. A simple calculation starting from (3.43) and (3.45)
shows that R+(z; p)a(z)−σ3 is a rational function of the form R−(z; p̃), where the residue C̃ of p̃ at
z = ξ is given by C̃ = −4 Im(ξ)2/C.
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We prove Proposition 3.2 in Appendix C. Taking the function p(z) to be given in terms of z ∈
Dξ(χ,τ) \ {ξ(χ, τ)} and parameters χ, τ, M by

(3.47) p(z) = psn(z; χ, τ, M) := Ls
n(χ, τ; M)

y(z; χ, τ)s2n

φ(z; χ, τ)
, n = N(χ, τ; M), s = S(χ, τ; M),

we define a parametrix for F(z; χ, τ, M) by F̆(z; χ, τ, M) := Ws(z; psn(⋄; χ, τ, M)).
Next, we proceed with analyzing the accuracy of approximating F(z; χ, τ, M) with F̆(z; χ, τ, M).

3.5. Improved error analysis. Given M > 0 and (χ, τ) ∈ S (see (1.25)), we define the (improved)
error matrix

(3.48) E(z; χ, τ, M) := F(z; χ, τ, M)F̆(z; χ, τ, M)−1, z ∈ C \ ΣE,

where ΣE = ΣF = Γ ∪ ∂Dξ ∪ ∂D∗
ξ . It is easy to see that E(z; χ, τ, M) satisfies a Riemann-Hilbert

problem of small-norm type as M → ∞, uniformly for (χ, τ) ∈ S . Indeed, z 7→ E(z; χ, τ, M) is
analytic in its domain of definition and tends to the identity as z → ∞. On the arcs of ΣE it satisfies
jump conditions of the form E+(z; χ, τ, M) = E−(z; χ, τ, M)VE(z; χ, τ, M) where the jump matrix
is given by

(3.49) VE(z; χ, τ, M) := F̆(z; χ, τ, M)VF(z; χ, τ, M)F̆(z; χ, τ, M)−1, z ∈ ΣE \ (∂Dξ ∪ ∂D∗
ξ ),

and
(3.50)
VE(z; χ, τ, M) := F̆−(z; χ, τ, M)VF(z; χ, τ, M)VF̆(z; χ, τ, M)−1F̆−(z; χ, τ, M)−1, z ∈ ∂Dξ ∪ ∂D∗

ξ ,

where VF̆(z; χ, τ, M) denotes the jump matrix for the parametrix F̆(z; χ, τ, M). Since the residue of
p(z) at z = ξ(χ, τ) is bounded uniformly for (χ, τ) ∈ S due to the definitions (3.36) and (3.38) and
the bounds (3.22)–(3.23), it follows from Proposition 3.2 that z 7→ F̆(z; χ, τ, M) is also uniformly
bounded. Since F̆(z; χ, τ, M) has unit determinant, it is then clear that the conjugating factors in
(3.49)–(3.50) are uniformly bounded. Then using the estimate (3.27) and the estimate (3.31) with
its Schwarz-reflection analogue valid on Γ ∩ D∗

ξ , one sees from (3.49) that

(3.51) sup
z∈ΣE\(∂Dξ∪∂D∗

ξ )

∥VE(z; χ, τ, M)− I∥ = O(e−c′M), M → +∞

holds for (χ, τ) ∈ S , where c′ = min{c, δ} > 0. Since VF̆(z; χ, τ, M) is exactly given by the explicit
terms in VF(z; χ, τ, M) in (3.39) for z ∈ ∂Dξ , and since these terms are bounded on ∂Dξ , one sees
that VF(z; χ, τ, M)VF̆(z; χ, τ, M)−1 = I + O(M− 1

2 ) holds uniformly on ∂Dξ and for (χ, τ) ∈ S .
Combining this with its Schwarz-reflection analogue and using the results in (3.50) then shows
that

(3.52) sup
z∈∂Dξ∪∂D∗

ξ

∥VE(z; χ, τ, M)− I∥ = O(M− 1
2 ), M → ∞,

an estimate that is also uniform for (χ, τ) ∈ S .
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Since VE(z; χ, τ, M)− I is uniformly O(M− 1
2 ) on the compact jump contour ΣE, it follows from

standard small-norm theory5 that

(3.53) E−1(χ, τ; M) := lim
z→∞

z(E(z; χ, τ, M)− I) = O(M− 1
2 )

holds uniformly for (χ, τ) ∈ S .
Recall now the recovery formula (2.6) and note that in a neighborhood of z = ∞ we have the

identities S(z; χ, τ, M) = F(z; χ, τ, M)S̆out
n (z; χ, τ) = E(z; χ, τ, M)F̆(z; χ, τ, M)S̆out

n (z; χ, τ). There-
fore, as all three factors tend to the identity as z → ∞ and S̆out

n (z; χ, τ, M) is diagonal,

MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) = 2i lim
z→∞

zF̆12(z; χ, τ, M) + 2iE−1,12(χ, τ; M)

= 2i lim
z→∞

zF̆12(z; χ, τ, M) + O(M− 1
2 ), M → +∞,

(3.54)

where we used (3.53). Now we calculate the explicit term using Proposition 3.2. If n = N(χ, τ; M)

and s = S(χ, τ; M) = +, then F̆12(z; χ, τ, M) = W+
12(z; p+n (⋄; χ, τ, M)) = R+

12(z; p+n (⋄; χ, τ, M))

holds by definition for large z. Therefore, using (3.43) and (3.45) gives

(3.55) 2i lim
z→∞

zF̆12(z; χ, τ, M) = 2iX+
12(p+n (⋄; χ, τ, M)) =

8i Im(ξ)2C+
n

4 Im(ξ)2 + |C+
n |2

=: ψ+
n (χ, τ; M),

where

(3.56) C+
n = C+

n (χ, τ; M) := Res
z=ξ(χ,τ)

p+n (z; χ, τ, M) = L+
n (χ, τ; M)

y(ξ(χ, τ); χ, τ)2n

η(χ, τ)

= L+
n (χ, τ; M)[2i Im(ξ(χ, τ))]−2nη(χ, τ)−2n−1,

and (3.16) was used on the second line. On the other hand, if n = N(χ, τ; M) and s = S(χ, τ; M) =

−, then for large z we have F̆12(z; χ, τ, M) = W−
12(z; p−n (⋄; χ, τ, M)) = R−

12(z; p−n (⋄; χ, τ, M)), so
using (3.43) and (3.44) gives

(3.57) 2i lim
z→∞

zF̆12(z; χ, τ, M) = 2iZ−
12(p−n (⋄; χ, τ, M)) =

−8i Im(ξ)2C−∗
n

4 Im(ξ)2 + |C−
n |2

=: ψ−
n (χ, τ; M),

where

(3.58) C−
n = C−

n (χ, τ; M) := Res
z=ξ(χ,τ)

p−n (z; χ, τ, M) = L−
n (χ, τ; M)

y(ξ(χ, τ); χ, τ)−2n

η(χ, τ)

= L−
n (χ, τ; M)[2i Im(ξ(χ, τ))]2nη(χ, τ)2n−1.

Although ψs
n and Cs

n are only used when n = N(χ, τ; M) and s = S(χ, τ; M), these expres-
sions have meaning when n, s, χ, τ, M are all independent. In this setting, we have the following
identity, which is also related to Remark 3.3:

Lemma 3.4. C+
n−1(χ, τ; M)C−

n (χ, τ; M) = −4 Im(ξ(χ, τ))2 holds for n ∈ {1, 2, . . . , ⌊K+⌉}.

The proof will be given in Appendix C. Lemma 3.4 immediately implies the identity

(3.59) ψ−
n (χ, τ; M) = ψ+

n−1(χ, τ; M), n ∈ {1, 2, . . . , ⌊K+⌉}.

5See, for example, [4, Section 4.1.3] for an application of this theory in more detail in a similar setting.
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Therefore, it is sufficient to work with the functions ψ+
n (χ, τ; M) for n ∈ {0, 1, . . . , ⌊K+⌉}. These

can be written equivalently in the form

(3.60) ψ+
n (χ, τ; M) = 2 Im(ξ(χ, τ))sech(Φn(χ, τ; M))eiΩn(χ,τ;M),

where

(3.61) Φn(χ, τ; M) := ln
(
|C+

n (χ, τ; M)|
2 Im(ξ(χ, τ))

)
, Ωn(χ, τ; M) :=

π

2
+ arg(C+

n (χ, τ; M)).

Since iC+
n (χ, τ; M) = 2 Im(ξ(χ, τ))Dn(χ, τ; M), where Dn(χ, τ; M) is defined in (1.26), these ex-

pressions agree with those in (1.28), and ψ+
n (χ, τ; M) agrees with ψn(χ, τ; M) defined in (1.29).

We therefore have shown that with n = N(χ, τ; M),

(3.62) MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) =

ψ+
n (χ, τ; M) + O(M− 1

2 ), s(χ, τ; M) = +,

ψ+
n−1(χ, τ; M) + O(M− 1

2 ), s(χ, τ; M) = −

in the limit M → +∞ with the error being uniform on the region S specified by (1.25). Using
(3.16), (3.19), (3.36) and (3.56) in the definition (3.61), we have

(3.63) Φn(χ, τ; M) = M
(

Re(2d(χ, τ))−
(

n +
1
2

)
ln(M)

M

)
− ln(2πγ2

n)− (2n + 1) ln(2 Im(ξ(χ, τ))|η(χ, τ)|).

Now the conditions n = N(χ, τ; M) and S(χ, τ; M) = + imply that − 1
2 ln(M) ≤ M Re(2d(χ, τ))−

(n + 1
2 ) ln(M) ≤ 0, and it follows that − 1

2 ln(M) + O(1) ≤ Φn(χ, τ; M) ≤ O(1) as M → +∞. Fur-
thermore, for any integer k ∈ Z, we have −(k + 1

2 ) ln(M) + O(1) ≤ Φn+k(χ, τ; M) ≤ −k ln(M) +

O(1) in the same limit. Provided that k ̸= 0, we then have |Φn+k(χ, τ; M)| ≳ 1
2 ln(M) and so

|ψ+
n+k(χ, τ; M)| ≲ M− 1

2 . Therefore,

(3.64) ψ+
n (χ, τ; M) =

⌊K+⌉

∑
m=0

ψ+
m(χ, τ; M)−

⌊K+⌉

∑
m=0
m ̸=n

ψ+
m(χ, τ; M) =

⌊K+⌉

∑
m=0

ψ+
m(χ, τ; M) + O(M− 1

2 ).

Likewise the conditions n = N(χ, τ; M) and S(χ, τ; M) = − imply that 0 ≤ M Re(2d(χ, τ))−
((n − 1) + 1

2 ) ln(M) ≤ 1
2 ln(M), and it follows that O(1) ≤ Φn−1(χ, τ; M) ≤ 1

2 ln(M) + O(1), so
also for fixed k ∈ Z, −k ln(M) + O(1) ≤ Φn−1+k(χ, τ; M) ≤ −(k − 1

2 ) ln(M) + O(1) in the same
limit. Hence for k ̸= 0 we have |ψ+

n−1+k(χ, τ; M)| ≲ M− 1
2 and so

(3.65) ψ+
n−1(χ, τ; M) =

⌊K+⌉

∑
m=0

ψ+
m(χ, τ; M)−

⌊K+⌉

∑
m=0

m ̸=n−1

ψ+
m(χ, τ; M) =

⌊K+⌉

∑
m=0

ψ+
m(χ, τ; M) + O(M− 1

2 ).

Using these results in (3.62) shows that regardless of the value of N(χ, τ; M) ∈ {0, 1, . . . , ⌊K+⌉}
and of the sign S(χ, τ; M) ∈ {−,+},

(3.66) MΨ(M2χ, M3τ; G(e−2M,
√

1 − e−4M)) =
⌊K+⌉

∑
m=0

ψ+
m(χ, τ; M) + O(M− 1

2 ), M → +∞
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holds uniformly for (χ, τ) ∈ S . Appealing to the estimate of the left-hand side on arbitrary com-
pacts K consisting of points with χ < χc(τ) that is part of Theorem 1.4, and noting that the finite
sum on the right-hand side of (3.66) is exponentially small on K extends the domain of validity
of (3.66) to K as well. Restoring the phase factor e−i arg(ab) completes the proof of Theorem 1.6.

Remark 3.5. The condition that the sum in (3.66) is finite is essential for the validity of the argu-
ment, to control the O(1) terms in the bounds for Φn+k(χ, τ; M) and Φn−1+k(χ, τ; M) and hence
guarantee that these phases are logarithmically large as M → +∞ for k ̸= 0. These O(1) terms de-
pend on k, and due to the term − ln(2πγ2

n) in (3.63), which grows rapidly with n, there is always
some value of n for which this M-independent becomes competitive with the otherwise dominant
terms in (3.63) proportional to M and ln(M). This subtle point has been missed in some prior
works (e.g., [12, 13]).

3.6. Proof of Corollary 1.7.

Proof. Let n ∈ {0, 1, . . . , ⌊K+⌉} be fixed. The maximum value of |ψn(χ, τ; M)| is achieved on a
curve depending on M defined by the condition Φn(χ, τ; M) = 0. Let (χ0, τ0) denote a point on
this curve. We Taylor-expand Φn(χ, τ; M) and Ωn(χ, τ; M) about this point using the fact that for
each index pair (k, l) with k ≥ 0 and l ≥ 0 but k + l ≥ 1,

(3.67) ∂k
χ∂l

τΦn(χ, τ; M) = 2M Re(∂k
χ∂l

τd(χ, τ)) + O(1)

and

(3.68) ∂k
χ∂l

τΩn(χ, τ; M) = 2M Im(∂k
χ∂l

τd(χ, τ)) + O(1).

Thus, if χ − χ0 = O(M−1) and τ − τ0 = O(M−1), then since Φn(χ0, τ0; M) = 0,

(3.69) Φn(χ, τ; M) = ∂χΦn(χ0, τ0; M)(χ − χ0) + ∂τΦn(χ0, τ0; M)(τ − τ0) + O(M−1).

Likewise, setting Ω0
n := Ωn(χ0, τ0; M),

(3.70) Ωn(χ, τ; M) = Ω0
n + ∂χΩn(χ0, τ0; M)(χ − χ0) + ∂τΩn(χ0, τ0; M)(τ − τ0) + O(M−1).

Since z = ξ(χ, τ) is a critical point of z 7→ ϑ(z; χ, τ), we have

∂χd(χ, τ) = −iϑχ(ξ(χ, τ); χ, τ) = −iξ(χ, τ),(3.71)

∂τd(χ, τ) = −iϑτ(ξ(χ, τ); χ, τ) = −iξ(χ, τ)2.(3.72)

Therefore, denoting ξ0 := ξ(χ0, τ0),

(3.73) Φn(χ, τ; M) = 2M Im(ξ0)(χ − χ0) + 4M Im(ξ0)Re(ξ0)(τ − τ0) + O(M−1)

and

(3.74) Ωn(χ, τ; M) = Ω0
n − 2M Re(ξ0)(χ − χ0)− 2M[Re(ξ0)

2 − Im(ξ0)
2](τ − τ0) + O(M−1).

Therefore, replacing (χ, τ) with (χ0 + χ, τ0 + τ) and substituting into (3.60) gives ψn(χ0 + χ, τ0 +

τ; M) = qn(χ, τ; M) +O(M−1) for χ = O(M−1) and τ = O(M−1), where qn(χ, τ; M) is defined in
(1.32). This completes the proof. □
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APPENDIX A. PROOF OF LEMMA 2.7

Proof of Lemma 2.7. By the second identity in (2.145), we can take the supremum over y ∈ [−π, π]

instead of y ∈ R. Since Θ(x; H)2 > 0 and Θ(iy; H)2 > 0 for all variables under consideration,
T(H) is a continuous function of H. To estimate it in the limits H ↓ −∞ and H ↑ 0. As Θ(w∗; H) =

Θ(w; H)∗ for real H < 0 and complex w, we have the simplified estimate

(A.1) T(H) ≤ 2 sup
3
2 H≤x≤− 3

2 H
−π≤y≤π

∣∣∣∣Θ(0; H)2Θ′(x + iy; H)Θ(x − iy; H)

Θ(x; H)2Θ(iy; H)2

∣∣∣∣.
Now, for all x, y ∈ R and H < 0, from (2.144) we have

(A.2) |Θ(x − iy; H)| =
∣∣∣∣∣∑n∈Z

e
1
2 n2 Henxe−iny

∣∣∣∣∣ ≤ ∑
n∈Z

e
1
2 n2 Henx = Θ(x; H).

Similarly,

(A.3) |Θ′(x + iy; H)| ≤ ∑
n∈Z

|n|e 1
2 n2 Henx,

and using the inequality |n| ≤ e|n|−1 valid for all n ∈ Z, we get

|Θ′(x + iy; H)| ≤ 1
e ∑

n∈Z

e
1
2 n2 Henxe|n| ≤ 1

e ∑
n∈Z

e
1
2 n2 Hen(x+1) +

1
e ∑

n∈Z

e
1
2 n2 Hen(x−1)

=
1
e
(Θ(x + 1; H) + Θ(x − 1; H)).

(A.4)

Using (A.2) and (A.4) in (A.1) along with the first identity in (2.145) gives

(A.5) T(H) ≤ 4
e

sup
3
2 H≤x≤− 3

2 H
−π≤y≤π

∣∣∣∣Θ(0; H)2Θ(x + 1; H)

Θ(x; H)Θ(iy; H)2

∣∣∣∣.
Applying the dominated convergence theorem to (2.144) shows that

(A.6) lim
H→−∞

Θ(iy; H) = 1, uniformly for y ∈ R.

And for real arguments x ∈ R, to study the same limit we complete the square in the exponent of
the summand in (2.144) to obtain

(A.7) ex2/(2H)Θ(x; H) = ∑
n∈Z

e
1
2 H(n+X)2

, X :=
x
H

∈ R.

This is a periodic function of X ∈ R with period 1. Assuming without loss of generality that
− 1

2 < X ≤ 1
2 , in the limit H ↓ −∞ the largest terms correspond to n = −1, 0, 1; subtracting them

off gives:

∑
n∈Z

e
1
2 H(n+X)2 − e

1
2 HX2 − e

1
2 H(X−1)2 − e

1
2 H(X+1)2

= e
1
2 HX2

∑
n∈Z

|n|≥2

e
1
2 H(n2+2nX)

≤ 2e
1
2 HX2

∞

∑
n=2

e
1
2 H(n2−n), − 1

2 < X ≤ 1
2 .

(A.8)
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Reindexing by n = k + 1, using k2 ≥ k for k = 1, 2, 3, . . . , and summing the resulting geometric
series shows that

(A.9) ∑
n∈Z

e
1
2 H(n+X)2

= e
1
2 HX2

(
1 + e

1
2 H(1−2X) + e

1
2 H(1+2X) + O(eH)

)
, H ↓ −∞,

uniformly for − 1
2 < X ≤ 1

2 . We can use this result on the right-hand side of (A.7) if we replace X
with the fractional part {x/H} defined by {⋄} := ⋄ − [⋄] ∈ (− 1

2 , 1
2 ] where [⋄] denotes the nearest

integer function, rounding down at the half-integers:

(A.10) Θ(x; H) = e−x2/(2H)e
1
2 H{x/H}2

(
1 + e

1
2 H(1−2{x/H}) + e

1
2 H(1+2{x/H}) + O(eH)

)
, H ↓ −∞,

with the result being uniformly valid for x ∈ R. Now notice that as {x/H} varies between − 1
2

and 1
2 ,

(A.11) 1 ≤ 1 + e
1
2 H(1−2{x/H}) + e

1
2 H(1+2{x/H}) ≤ 2 + eH.

Hence also

(A.12) 0 <
Θ(x + 1; H)

Θ(x; H)
≤ (2 + O(eH))e−x/He−1/(2H)e

1
2 H{x/H+1/H}2

e−
1
2 H{x/H}2

, H ↓ −∞.

Now, unless − 1
2 < {x/H} ≤ − 1

2 −
1
H , we will have {x/H + 1/H} = {x/H}+ 1/H, and it follows

that e−1/(2H)e
1
2 H{x/H+1/H}2

e−
1
2 H{x/H}2

= e{x/H} ≤ e
1
2 . Otherwise, {x/H} = − 1

2 + O(H−1) and
{x/H + 1/H} = 1

2 + O(H−1), and therefore e−1/(2H)e
1
2 H{x/H+1/H}2

e−
1
2 H{x/H}2

= O(1) as H ↓
−∞. Therefore,

(A.13)
Θ(x + 1; H)

Θ(x; H)
= O(e−x/H), H ↓ −∞

holds uniformly for x ∈ R. Using (A.6) and (A.13) in (A.5) proves the estimate (2.203).
To obtain asymptotics of T(H) as H ↑ 0 instead, we use the Poisson summation formula to

convert (2.144) into a different series representation of Θ(w; H):

(A.14) Θ(w; H) =

√
−2π

H ∑
n∈Z

e2π2(n−w/(2πi))2/H =

√
−2π

H
e−w2/(2H)Θ

(
2πiw

H
;

4π2

H

)
, H < 0.

Combining this formula with the inequality (A.2) gives

|Θ(x − iy; H)| =
√
−2π

H
e−x2/(2H)ey2/(2H)

∣∣∣∣Θ(−2πy
H

+
2πix

H
;

4π2

H

)∣∣∣∣
≤
√
−2π

H
e−x2/(2H)ey2/(2H)Θ

(
−2πy

H
;

4π2

H

)
= e−x2/(2H)Θ(iy; H).

(A.15)
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Using this inequality in (A.1) gives

T(H) ≤ 2 sup
3
2 H≤x≤− 3

2 H
−π≤y≤π

e−x2/(2H) Θ(0; H)2

Θ(x; H)2

∣∣∣∣Θ′(x + iy; H)

Θ(iy; H)

∣∣∣∣
≤ 2e−

9
8 H sup

3
2 H≤x≤− 3

2 H
−π≤y≤π

Θ(0; H)2

Θ(x; H)2

∣∣∣∣Θ′(x + iy; H)

Θ(iy; H)

∣∣∣∣.(A.16)

Next, differentiation of (A.14) yields the identity
(A.17)

Θ′(w; H) = − w
H

√
−2π

H
e−w2/(2H)Θ

(
2πiw

H
;

4π2

H

)
+

2πi
H

√
−2π

H
e−w2/(2H)Θ′

(
2πiw

H
;

4π2

H

)
.

Therefore, for all x ∈ R and y ∈ [−π, π],

(A.18)
∣∣∣∣Θ′(x + iy; H)

Θ(iy; H)

∣∣∣∣ ≤
√

x2 + y2

(−H)

√
−2π

H
e(y

2−x2)/(2H)

∣∣∣∣∣∣∣∣∣
Θ
(
−2πy

H
+

2πix
H

;
4π2

H

)
Θ(iy; H)

∣∣∣∣∣∣∣∣∣
+

(
−2π

H

) 3
2

e(y
2−x2)/(2H)

∣∣∣∣∣∣∣∣∣
Θ′
(
−2πy

H
+

2πix
H

;
4π2

H

)
Θ(iy; H)

∣∣∣∣∣∣∣∣∣,
and applying (A.15) to the first term in the upper bound gives
(A.19)∣∣∣∣Θ′(x + iy; H)

Θ(iy; H)

∣∣∣∣ ≤
√

x2 + y2

(−H)
e−x2/(2H) +

(
−2π

H

) 3
2

e(y
2−x2)/(2H)

∣∣∣∣∣∣∣∣∣
Θ′
(
−2πy

H
+

2πix
H

;
4π2

H

)
Θ(iy; H)

∣∣∣∣∣∣∣∣∣.
To deal with the second term, we begin by rewriting (A.4) with the necessary substitutions and
then use (A.14) once again on the resulting right-hand side to obtain the inequality

(A.20)
∣∣∣∣Θ′
(
−2πy

H
+

2πix
H

;
4π2

H

)∣∣∣∣ ≤ 1
e

(
Θ
(
−2πy

H
+ 1;

4π2

H

)
+ Θ

(
−2πy

H
− 1;

4π2

H

))
=

1
e

√
− H

2π
e−y2/(2H)e−H/(8π2)

(
ey/(2π)Θ

(
iy − iH

2π
; H
)
+ e−y/(2π)Θ

(
iy +

iH
2π

; H
))

.

Now, taking w = iy for y ∈ R and combining (A.10) and (A.14) gives

(A.21) Θ(iy; H) =

√
−2π

H
e2π2{−y/(2π)}2/H

·
(

1 + e2π2(1−2{−y/(2π)})/H + e2π2(1+2{−y/(2π)})/H + O(e4π2/H)
)

,
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as H ↑ 0, uniformly for y ∈ R, and we have the upper and lower bounds

(A.22) 1 ≤ 1 + e2π2(1−2{−y/(2π)})/H + e2π2(1+2{−y/(2π)})/H ≤ 2 + e4π2/H.

Using these shows that, uniformly for y ∈ R,

(A.23)
Θ
(

iy ∓ iH
2π

; H
)

Θ(iy; H)
≤ e2π2{−y/(2π)±H/(4π2)}/He−2π2{−y/(2π)}/H

(
2 + O(e4π2/H)

)
= O(1)

holds in the limit H ↑ 0 (the second estimate follows from exactly the same reasoning as applied
after (A.12) above). Therefore, combining (A.19), (A.20), and (A.23) gives

(A.24) sup
3
2 H≤x≤− 3

2 H
−π≤y≤π

∣∣∣∣Θ′(x + iy; H)

Θ(iy; H)

∣∣∣∣ = O(H−1), H ↑ 0.

Finally, taking w = x ∈ R and combining (A.6) with (A.14) gives

(A.25) Θ(x; H) =

√
−2π

H
e−x2/(2H)(1 + o(1)), H ↑ 0

uniformly for x ∈ R. This immediately yields that uniformly for x ∈ R,

(A.26)
Θ(0; H)2

Θ(x; H)2 = ex2/H(1 + o(1)), H ↑ 0.

Using this along with (A.24) in (A.16) proves the estimate (2.204) and finishes the proof. □

APPENDIX B. ALTERNATIVE FORMULA FOR |Ψ̆(χ, τ; M)|2

Although the alternate elliptic parameter m1 defined in (2.267) is apparently not naturally asso-
ciated to the underlying elliptic curve R whose theta function theory is used to solve Riemann-
Hilbert Problem 4, it is the parameter most naturally linking the theta functions of R to Jacobi
elliptic functions. This is best seen using the descending Landen transformation [22, Eqn. 19.8.12]:

(B.1) K(m) =
2

1 +
√

1 − m
K

(1 −
√

1 − m
1 +

√
1 − m

)2
, 0 < m < 1.

Replacing m in this identity with 1 − ((1 −
√

1 − m)/(1 +
√

1 − m))2 yields

(B.2) K

1 −
(

1 −
√

1 − m
1 +

√
1 − m

)2
 = (1 +

√
1 − m)K(1 − m), 0 < m < 1.

Therefore,

(B.3)
K(1 − m)

K(m)
=

1
2

K

1 −
(

1 −
√

1 − m
1 +

√
1 − m

)2


K

(1 −
√

1 − m
1 +

√
1 − m

)2
 , 0 < m < 1.
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With another substitution, this can be written as

(B.4)
K(1 − m)

K(m)
= 2

K

(
1 − 4

√
m

(1 +
√

m)2

)
K

(
4
√

m
(1 +

√
m)2

) , 0 < m < 1.

Consequently, according to (2.138), the period ratio appearing in the solution of Riemann-Hilbert
Problem 4 is

(B.5) H = −π
K(1 − m)

K(m)
= −2π

K

(
1 − 4

√
m

(1 +
√

m)2

)
K

(
4
√

m
(1 +

√
m)2

) .

Taking m = cot2( 1
2 θα) tan2( 1

2 θβ) as indicated in (2.138) then implies that

(B.6) H = −2π
K(1 − m1)

K(m1)
, m1 :=

4
√

m
(1 +

√
m)2 =

4 cot( 1
2 θα) tan( 1

2 θβ)

(1 + cot( 1
2 θα) tan( 1

2 θβ))2
=

sin(θα) sin(θβ)

sin2( 1
2 (θα + θβ))

.

With this in hand, we can return to (2.227) and directly try to write the ratios of theta functions in
terms of Jacobi elliptic functions with parameter m1. In this Appendix, we will use this approach
to prove the alternate formula (2.267)–(2.269) for |Ψ̆(χ, τ; M)|2.

To this end, first write (2.226)–(2.227) as follows: Ψ̆(χ, τ; M) = e−iMϕFG, where
(B.7)

F := i(Im(β)− Im(α))
Θ(A(∞) + A(z0) +K; H)

Θ(A(∞)− A(z0)−K; H)
, G :=

Θ(A(∞)− A(z0)−K+ iM∆; H)

Θ(A(∞) + A(z0) +K− iM∆; H)
.

Then, using the fact that Im(A(∞)) = Im(A(z0)) = − 1
2 π we can write A(∞) = 1

2 η − 1
2 iπ and

A(z0) =
1
2 γ − 1

2 iπ where η and γ are real. The latter are related by (2.143) in which n1 = −1 + 2µ

and n2 = 1 + 2ν for (µ, ν) ∈ Z2. Therefore,

(B.8) A(∞) + A(z0) = (2µ − 1)iπ + ( 1
2 + ν)H and A(∞)− A(z0) = η − 2πiµ − ( 1

2 + ν)H.

Using also (2.146) and Θ(w + 2πi; H) = Θ(w; H) gives

(B.9) F = i(Im(β)− Im(α))
Θ((ν + 1)H; H)

Θ(η − iπ − (ν + 1)H; H)
, G =

Θ(η − iπ + iM∆ − (ν + 1)H; H)

Θ(−iM∆ + (ν + 1)H; H)
.

Next, using the “iterated” identity Θ(w + nH; H) = e−
1
2 n2 H−nwΘ(w; H) for n ∈ Z gives

F = i(Im(β)− Im(α))e−(ν+1)(η−iπ) Θ(0; H)

Θ(η − iπ; H)

G = e(ν+1)(η−iπ) Θ(η − iπ + iM∆; H)

Θ(−iM∆; H)
.

(B.10)

Hence also Ψ̆(χ, τ; M) = e−iMϕ F̃G̃ where

(B.11) F̃ := i(Im(β)− Im(α))
Θ(0; H)

Θ(η − iπ; H)
and G̃ :=

Θ(η − iπ + iM∆; H)

Θ(−iM∆; H)
.
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Note that F̃ is purely imaginary. Therefore

(B.12) |F̃|2 = (Im(β)− Im(α))2 Θ(0; H)2

Θ(η − iπ; H)2 .

On the other hand, G̃ has a variable phase depending on M∆, so from (2.144) and Θ(−w; H) =

Θ(w; H),

(B.13) |G̃|2 =
Θ(η − iπ + iM∆; H)Θ(η + iπ − iM∆; H)

Θ(iM∆; H)2 .

Next, using the addition formula (deduced from [22, Eqn. 20.7.8])

(B.14) Θ(w + z; H)Θ(w − z; H)

=
Θ(w + iπ; H)2Θ(z; H)2 + e

1
2 H+w+zΘ(w + iπ + 1

2 H; H)2Θ(z + 1
2 H; H)2

Θ(iπ; H)2

with w = η and z = iM∆ − iπ gives

(B.15) |G̃|2 =
Θ(η + iπ; H)2Θ(iM∆ − iπ; H)2

Θ(iπ; H)2Θ(iM∆; H)2

+ e
1
2 H+η−iπ+iM∆ Θ(η + iπ + 1

2 H; H)2Θ(iM∆ − iπ + 1
2 H; H)2

Θ(iπ; H)2Θ(iM∆; H)2 .

Now we use the identities

(B.16)
Θ(W + iπ; H)

Θ(W; H)
=

Θ(0; H)

Θ(iπ; H)
dn
(

K(m1)

iπ
(W + iπ); m1

)
and

(B.17)
Θ(W + 1

2 H + iπ; H)

Θ(W; H)
= −ie−

1
2 W Θ(− 1

2 H; H)

Θ(iπ; H)
cn
(

K(m1)

iπ
(W + iπ); m1

)
,

along with Θ(W + 2πi; H) = Θ(W; H) to give

(B.18) |G̃|2 =
Θ(η + iπ; H)2Θ(0; H)2

Θ(iπ; H)4 dn2
(

K(m1)

π
(M∆ + π); m1

)
+ e

1
2 H+η Θ(η + iπ + 1

2 H; H)2Θ( 1
2 H; H)2

Θ(iπ; H)4 cn2
(

K(m1)

π
(M∆ + π); m1

)
.

Next, using (2.235) with H replaced by H/2 gives

(B.19) |F̃G̃|2 = (Im(β)− Im(α))2 Θ(0; H)4

Θ(iπ; H)4 dn2
(

K(m1)

π
(M∆ + π); m1

)
− e

1
2 H(Im(β)− Im(α))2 Θ( 1

2 H; H)4

Θ(iπ; H)4 sn2
(

K(m1)

iπ
η; m1

)
cn2
(

K(m1)

π
(M∆ + π); m1

)
.

Using [22, Eqn. 20.9.1] we have

(B.20) m1 = e
1
2 H Θ( 1

2 H; H)4

Θ(0; H)4 ,
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so

(B.21) |F̃G̃|2 = (Im(β)− Im(α))2 Θ(0; H)4

Θ(iπ; H)4

[
dn2

(
K(m1)

π
(M∆ + π); m1

)
− m1sn2

(
K(m1)

iπ
η; m1

)
cn2
(

K(m1)

π
(M∆ + π); m1

)]
.

Combining (B.20) with [22, Eqn. 20.7.5] shows that also

(B.22)
Θ(iπ; H)4

Θ(0; H)4 = 1 − m1.

Using this, as well as dn2(·; m1) = 1 − m1sn2(·; m1) and cn2(·; m1) = 1 − sn2(·; m1), together with
sn2(−iu; m1) = −sc2(u; 1 − m1) (see [22, §22.6(iv)]),

(B.23) |F̃G̃|2 =
(Im(β)− Im(α))2

1 − m1

[(
1 + m1sc2(u1; 1 − m1)

)
− m1

(
1 + sc2(u1; 1 − m1)

)
sn2(v1; m1)

]
,

wherein

(B.24) u1 :=
K(m1)

π
η, η = Re(2A(∞)), v1 :=

K(m1)

π
(M∆ + π).

Comparing with (2.243), we have

(B.25) u1 =
K(m1)

K(m)
u = (1 +

√
m)u.

The substitution behind the descending Landen transformation in the form

(B.26) K(m) =
∫ 1

0

dW√
1 − W2

√
1 − mW2

=
1

1 +
√

m

∫ 1

0

dt√
1 − t2

√
1 − m1t2

=
K(m1)

1 +
√

m

is

(B.27) W =
1 +

√
m −

√
(1 +

√
m)2 − 4

√
mt2

2
√

mt
=⇒ t =

(1 +
√

m)W
1 +

√
mW2 .

Using this same transformation in the formula u = U(i tan( 1
2 θα)) where U(ζ) is defined by (2.247)

gives u1 = U1(i tan( 1
2 (θα + θβ))) wherein

(B.28) U1(ζ) := i
∫ ζ

0

dt√
1 − t2

√
1 − m1t2

.

Note that in computing u1, the upper limit of integration can take any purely imaginary value;
hence to make the integral well-defined we can assume that the path of integration lies on the
imaginary axis, proceeding upwards from the origin and possibly continuing through the inte-
grable singularity at t = ∞ should the upper limit be negative imaginary. Then, by exactly the
same arguments as were used to analyze r(ζ) := sn2(U(ζ); 1 − m) in Section 2.10 we have the
analogous result:

(B.29) r1(ζ) := sn2(U1(ζ); 1 − m1) =
ζ2

ζ2 − 1
.
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Taking ζ = i tan( 1
2 (θα + θβ)) yields

(B.30) sc2(u1; 1 − m1) =
sn2(u1; 1 − m1)

1 − sn2(u1; 1 − m1)
=

r1(i tan( 1
2 (θα + θβ)))

1 − r1(i tan( 1
2 (θα + θβ)))

= tan2( 1
2 (θα + θβ)).

Using the notation tα := tan( 1
2 θα) and tβ := tan( 1

2 θβ) we then have by an addition formula

(B.31) sc2(u1; 1 − m1) = tan2( 1
2 (θα + θβ)) =

(tα + tβ)
2

(1 − tαtβ)2 .

Then using the definition of m1 in (B.6) gives

(B.32) m1 =
4t−1

α tβ

(1 + t−1
α tβ)2

=
4tαtβ

(tα + tβ)2 =⇒ 1
1 − m1

=
(tα + tβ)

2

(tα − tβ)2 .

Hence,

(B.33)
1 + m1sc2(u1; 1 − m1)

1 − m1
=

(tα + tβ)
2

(tα − tβ)2

(
1 +

4tαtβ

(1 − tαtβ)2

)
=

(tα + tβ)
2(1 + tαtβ)

2

(tα − tβ)2(1 − tαtβ)2

and

(B.34)
m1
(
1 + sc2(u1; 1 − m1)

)
1 − m1

=
4tαtβ

(tα − tβ)2

(
1 +

(tα + tβ)
2

(1 − tαtβ)2

)
=

4tαtβ(1 + t2
α)(1 + t2

β)

(tα − tβ)2(1 − tαtβ)2 .

Then also,

(B.35) (Im(β)− Im(α))2 = ρ2(sin(θβ)− sin(θα))
2 = 4ρ2 (tβ − tα)2(1 − tαtβ)

2

(1 + t2
α)

2(1 + t2
β)

2
.

Using these results in (B.23) gives

(B.36) |F̃G̃|2 =
4ρ2(tα + tβ)

2(1 + tαtβ)
2

(1 + t2
α)

2(1 + t2
β)

2
−

16ρ2tαtβ

(1 + t2
α)(1 + t2

β)
sn2(v1; m1).

Then observe that

(B.37)
4ρ2(tα + tβ)

2(1 + tαtβ)
2

(1 + t2
α)

2(1 + t2
β)

2
=
(
ρ sin(θα) + ρ sin(θβ)

)2
= (Im(α) + Im(β))2,

and

(B.38)
16ρ2tαtβ

(1 + t2
α)(1 + t2

β)
= 4ρ2 sin(θα) sin(θβ) = 4Im(α)Im(β).

Since |Ψ̆(χ, τ; M)|2 = |F̃G̃|2, this proves (2.269).

APPENDIX C. SOLUTION OF RIEMANN-HILBERT PROBLEM 6 AND PROOFS OF RELATED

PROPERTIES

Proof of Proposition 3.2. We first produce a solution of Riemann-Hilbert Problem 6. The fact that
this solution is unique follows by a straightforward application of Liouville’s theorem using the
fact that the jump matrix has unit determinant.
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Observe that

(C.1) Qs(z) :=

Ws(z; p)VWs
(z; p), z ∈ (Dξ ∪ D∗

ξ ) \ {ξ, ξ∗},

Ws(z; p), z ∈ C \ Dξ ∪ D∗
ξ ,

extends to C \ {ξ, ξ∗} as a meromorphic matrix function with simple poles at z = ξ and z = ξ∗

only, thanks to the analyticity properties of Ws(z; p) and the fact that the jump matrix VWs
(z; p)

defined in (3.41) has simple poles at z = ξ, ξ∗ and is otherwise analytic in the disks. Therefore,
Qs(z) necessarily has the form

(C.2) Qs(z) = I +
Xs

z − ξ
+

Zs

z − ξ∗
,

where Xs and Zs are constant matrices to be determined. Because the conditions of Riemann-
Hilbert Problem 6 are symmetric with respect to Schwarz reflection, Xs and Zs are related by

(C.3) Zs = σ2Xs∗σ2.

As Ws(z; p) is analytic at z = ξ, ξ∗, the condition

Qs(z)VWs
(z; p)−1 = O(1), z → ξ, ξ∗,(C.4)

must hold. In what follows we focus on the limit z → ξ as what happens as z → ξ∗ follows from
the symmetry in the problem. Since Ns is 2-nilpotent, from (3.41) we have

(C.5) VWs
(z; p)−1 = I − p(z)Ns = −CNs(z − ξ)−1 + I − p0Ns + O(z − ξ), z → ξ,

where p(z) has the Laurent expansion p(z) = C(z − ξ)−1 + p0 + O(z − ξ) (see (3.46)). Then,
expanding (C.2) as z → ξ, we see that
(C.6)

Qs(z)VWs
(z; p)−1 = −CXsNs(z − ξ)−2 +

[
Xs(I − p0Ns)− C

(
I +

Zs

ξ − ξ∗

)
Ns

]
(z − ξ)−1 + O(1).

Comparing with (C.4), we arrive at the following linear system of equations for the unknown
matrices Xs and Zs:

CXsNs = 0,(C.7)

Xs(I − p0Ns)− C
(

I +
Zs

ξ − ξ∗

)
Ns = 0.(C.8)

Because Ns is 2-nilpotent, multiplying (C.8) on the right by (I − p0Ns)−1 = I + p0Ns allows Xs to
be explicitly expressed in terms of Zs as:

(C.9) Xs = C
(

I +
Zs

ξ − ξ∗

)
Ns.

The equation (C.7) gives no additional information, but using (C.3) to eliminate Zs gives

(C.10) Xs = C
(

I +
σ2Xs∗σ2

ξ − ξ∗

)
Ns.
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In the case s = −, using (3.37) shows that the second column of X− vanishes, and the first column
then reads

(C.11)

[
X−

11
X−

21

]
= C

 −
X−∗

21
2i Im(ξ)

1 +
X−∗

11
2i Im(ξ)

 =⇒ X−
11 =

2i Im(ξ)|C|2
4 Im(ξ)2 + |C|2 , X−

21 =
4 Im(ξ)2C

4 Im(ξ)2 + |C|2 ,

which together with (C.3) then proves (3.44). If instead s = +, then the first column of X+ vanishes
and the second column then reads

(C.12)

[
X+

12
X+

22

]
= C

1 +
X+∗

22
2i Im(ξ)

−
X+∗

12
2i Im(ξ)

 =⇒ X−
12 =

4 Im(ξ)2C
4 Im(ξ)2 + |C|2 , X−

22 =
2i Im(ξ)|C|2

4 Im(ξ)2 + |C|2 ,

which together with (C.3) proves (3.45). □

Proof of Lemma 3.4. From the definitions (3.56) and (3.58) we get

(C.13) C+
n−1(χ, τ; M)C−

n (χ, τ; M) =
L+

n−1(χ, τ; M)L−
n (χ, τ; M)

y(ξ(χ, τ); χ, τ)2η(χ, τ)2 .

Using (3.16), this can be written in the form

(C.14) C+
n−1(χ, τ; M)C−

n (χ, τ; M) = −4 Im(ξ(χ, τ))2L+
n−1(χ, τ; M)L−

n (χ, τ; M).

But, recalling (3.19) and (3.36), we have

(C.15) L+
n−1(χ, τ; M)L−

n (χ, τ; M) =
An−1(χ, τ; M)2

An(χ, τ; M)2M
= 1,

so the proof is complete. □
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